NGUYỄN ĐÌNH TRÍ (Chủ biên) TẠ VĂN ĐĨNH - NGUYỄN HỒ QUÌNH

Bài tập TOAN GAO GÂP Tập một Đại số diải tích NHÀ XUẤT BẢN GIÁO DỤC

WWW.VNMATH.com NGUYỄN ĐÌNH TRÍ (Chủ biên) TẠ VĂN ĐĨNH - NGUYỄN HỒ QUÌNH

BÀI TẬP TOÁN CAO CẤP

TẬP MỘT

ĐẠI SỐ VÀ HÌNH HỌC GIẢI TÍCH

(Tái bản lần thứ mười)

NHÀ XUẤT BẢN GIÁO DỤC

THAY LỜI NÓI ĐẦU

Năm 1996 Nhà xuất bản Giáo dục đã xuất bản quyển Toán học cao cấp tập 1. Dại số và Hình học giải tích, từ nay sẽ viết tắt là Thực/1– Quyển Bải tập Toán học cao cấp tập 1 này, viết tắt là BTThực/1 là tiếp nối quyển Thực/1, nhằm trình bày phần bải giải và hướng dẫn cách giải các bài tập đã ra ở quyển Thực/1. Riêng chương IV chỉ là ôn tập các kiến thức đã học ở trường phổ thông, nên không trình bày ở quyển này, độc giả có thể xem các đáp số ở quyển Thực/1.

Chúng tôi muốn lưu ý độc giả về cách đánh số các tiêu để để tiện việc tra cứu.

Ở quyển Theo/I chương đánh số bằng một số, thí dụ chương II là chương thứ hai, tiết đánh số bằng hai số, thí dụ tiết 3.2 là tiết 2 ở chương 3, độc giả tìm nó ở chương 3 tiết thứ 2, mục đánh số bằng 3 số, thí dụ mục 3.2.1 là mục 1 ở tiết 2 của chương 3, độc giả tìm nó ở chương 3 tiết 2 mục 1. Các định nghĩa, định lí, thí dụ và chứ ý cũng đánh số bằng ba số như vậy. Riêng các hình vẽ chỉ có một số.

Ở quyển BTThee/1 cách đánh số làm tương tự. Chương có một số, tiết có hai số, Riêng bài tập có hai số, số đầu chỉ chương, số thứ hai chỉ số thứ tự của bài tập trong chương, chẳng hạn bài tập 4.3 là bài tập thứ 3 ở chương IV, độc giả tìm nó ở chương 4 bài tập thứ 3. Hình vẽ đánh số bằng một số.

Vì tài liệu này viết lần dầu nên không tránh khỏi thiếu sót, chúng tôi mong nhận được các ý kiến của độc giả, chúng tôi rất cảm ơn.

Hà Nội, tháng 5/1997 Tặc giả TẠ VĂN DÍNH

ه[.]

Chương I TẬP HỢP VÀ ÁNH XẠ

A. ĐỀ BÀI

1.0. MỞ ĐẦU

1.1. Dùng các kí hiệu đã học ở tiết 1.0 hãy viết các mệnh để sau :

Dinh nghĩa - Tam giác ABC gọi là tam giác cân nếu nó có hai góc bằng nhau.

Dinh li - Nếu tảm giác ABC có hai cạnh bằng nhau thì nó là tam giác cân.

Dinh li – Điều kiện cần và đủ để tam giác ABC cân là nó có hai cạnh bằng nhau.

1.1. TẬP HỢP VÀ PHÀN TỬ

1.2. Tìm tập các nghiệm của phương trình hay bất phương trình dưới đây và biểu diễn chúng trên trục số :

a) $x^2 - 4x + 3 = 0$ b) $x^2 - 4x + 3 > 0$ c) $x^2 - 4x + 3 \le 0$ d) $x^2 - x + 1 = 0$ e) $x^2 - x + 1 > 0$ f) $x^2 - x + 1 \le 0$

1.3. Tìm tập các nghiệm của hệ phương trình hay bất phương trình dưới đây và biểu diễn chúng trên mặt phẳng tọa độ :

a) $\begin{cases} 3x + 2y = 8 & c \ 3x - y = 0 \\ 4x - y = 7 & d \ 3x - y > 0 \\ b) \begin{cases} 3x - y = 2 \\ -6x + 2y = -4 & e \ 3x - y < 0 \end{cases}$

1.4. Trong các trường hợp sau hỏi có A = B không ?

a) A là tập các số thực ≥ 0 , B là tập mọi số thực \ge trị tuyệt đối của chính nó ;

b) A là tập các số thực ≥ 0 , B là tập mọi số thực \le trị tuyệt đối của chính nó ;

c) A là tập mọi số nguyên không âm và \leq 100 có tam thừa là một số lẻ không chia hết cho 3, B là tập các số nguyên không âm và \leq 100 có bình phương trừ 1 chia hết cho 24.

1.2. CÁC PHÉP TOÁN VỀ TẬP HỢP

1.5. A, B, C là tập con của E. Chúng minh rằng nếu $A \cup C \subset A \cup B$ và $A \cap C \subset A \cap B$ thì $C \subset B$.

1.6. A là tập con của E. Hảy xác định các tập sau $\overline{(A)}$, $A \cap \overline{A}, A \cup \overline{A}, \overline{\emptyset}, \overline{E}$.

1.7. A, B là các tập con của E: Chứng minh

a) Nếu $A \subset B$ thì $\overline{B} \subset \overline{A}$.

b) Nếu A và B rời nhau thỉ mọi phần tử của E sẽ thuộc \overline{A} hoặc thuộc \overline{B}

c) $A \subset B \Leftrightarrow A \cup B = B \Leftrightarrow \overline{A} \cup B = E$ d) $A \subset \overline{B} \Leftrightarrow A \cap B = A \Leftrightarrow A \cap \overline{B} = \emptyset$ e) $\overline{A} \cup \overline{B} = \overline{A \cap B}$ f) $\overline{A} \cap \overline{B} = \overline{A \cup B}$

www.VNMATH.com

1.3. TÍCH ĐỀ CÁC

1.8. Cho $A = \{1, 2, 3\}, B = \{2, 3, 4\}$.

Hāy viết ra tất cả các phần tử của $A \times B$ và biểu diễn chúng thành các điểm trên mặt phẳng tọa độ.

1.9. Cho $A = [1, 2] := \{x \mid 1 \le x \le 2\}$

 $-B = [2, 3] := \{x \mid 2 \leq x \leq 3\}$

Hãy biểu diễn hình học tập tích $A \times B$ trên mặt phẳng tọa độ.

1.4. QUAN HỆ TƯƠNG ĐƯƠNG VÀ QUAN HỆ THỨ TỰ

1.10. Trong R, quan hệ $a \mathcal{R} b$ xác định bởi

$$a^{3} - b^{3} = a - b^{*}$$

có phải là quan hệ tương đương không ? Tìm lớp tương đương $\mathcal{E}(\mathbf{a}, \mathcal{R})$.

1.11. Trong tập các số tự nhiên, čác quan hệ sau có phải là quan hệ tương đương không ?

a) a chia hết cho b;

b) a không nguyên tố với b.

1.12. a) Trong không gian hình học thông thường được coi như tập các điểm M, M', ..., chứng minh rằng quan hệ "M và M'ở trên một đường thẳng cùng phương với đường thẳng D cho trước" là một quan hệ tương đương. Nêu đặc điểm của các lớp tương đương.

b) Cùng câu hỏi đó trong mặt phẳng với quan hệ "M' là ảnh của M trong một phép quay quanh tâm O cho trước."

1.13. Trong tập các đường thẳng trong không gian quan hệ $D \perp D'$ có phải là quan hệ tương đương không ?

1.14. Trong \mathbf{R}^2 , hãy chứng minh quan hệ

 $(x, y) \leq (x', y') \Leftrightarrow x \leq x', y \leq y'$

là quan hệ thứ tự. Nó có phải quan hệ thứ tự toàn phần không? Nếu không, hãy xác định hai cặp (x, y) và (x', y') cụ thể không thỏa mãn cả $(x, y) \leq (x', y')$ lẫn $(x', y') \leq (x, y)$.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

 $\mathbf{7}$

1.15. Một kỉ thi có hai môn thi, điểm cho từ 0 đến 20. Mỗi thí sinh có hai điểm, x là điểm của môn thi thứ nhất, ylà điểm của môn thi thứ hai. Trong tập các thí sinh, người ta xét tập các cặp điểm số (x, y) và xác định quan hệ hai ngôi \mathcal{R} như sau

$$(x_1, y_1) \mathcal{R} (x_2, y_2) \Leftrightarrow \begin{cases} \text{hoặc } x_1 < x_2 \\ \text{hoặc } x_1 = x_2 \text{ và } y_1 \leq y_2 \end{cases}$$

Chứng minh rằng $\mathcal R$ là một quan hệ thứ tự toàn phần trên tập các thí sinh.

1.5. ÁNH XẠ

1.16. Các ánh xạ $f : A \rightarrow B$ sau là đơn ánh, toàn ánh, song ' ánh ? Xác định ánh xạ ngược nếu có :

1)
$$A = \mathbf{R}, B = \mathbf{R}, f(x) = x + 7$$
;
2) $A = \mathbf{R}, B = \mathbf{R}, f(x) = x^2 + 2x - 3$;
3) $A = [4, 9], B = [21, 96], f(x) = x^2 + 2x - 3$;
4) $A = \mathbf{R}, B = \mathbf{R}, f(x) = 3x - 2|x|$;
5) $A = \mathbf{R}, B = (0, +\infty), f(x) = e^{x+1}$;
6) $A = \mathbf{N}, B = \mathbf{N}, f(x) = x(x + 1)$.

1.17. Các ánh xạ sau đây là loại ánh xạ gì ? Xác định ánh xạ ngược nếu có :

1) Đối xứng đối với một điểm O ;

2) Tinh tiến theo vecto a;

3) Quay quanh tâm O một góc θ trong mặt phẳng ;

4) Vị tự tâm O với tỉ số $k \neq 0$.

1.18. a) Cho ánh xạ $f : \mathbf{R} \to \mathbf{R}$ xác định bởi

$$f(x) = \frac{2x}{1+x^2}$$

Nó có là đơn ánh ? là toàn ánh ?

Tìm ảnh *f*(**R**). 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 8 b) Cho ánh xạ $g : \mathbf{R}^* \to \mathbf{R}, \ \mathbf{R}^* = \mathbf{R} - \{0\}$ xác định bởi $x \mapsto \frac{1}{x}$. Tìm ảnh fog.

1.19. Xét hai ánh xa

 $f: \mathbf{R} \to \mathbf{R}$ xác định bởi $f(\mathbf{x}) = |\mathbf{x}|$

 $g: \mathbf{R}_+ \to \mathbf{R}, \ \mathbf{R}_+ := \{x \mid x \in \mathbf{R}, x \ge 0\}$ xác định bởi $x \mapsto \sqrt{x}$. So sánh fog và gof.

1.20. Cho 4 tập hợp A, B, C, D và ba ánh xạ

 $f: A \rightarrow B$; $g: B \rightarrow C$; $h: C \rightarrow D$.

Chúng minh rằng

$$h_0(g_0f) = (h_0g)_0f$$

1.21. 1) Cho 2 tập E và F và ánh xạ $f : E \rightarrow F$. A và B là hai tập con của E. Chứng minh

a) $A \subset B \Leftrightarrow f(A) \subset f(B)$;

b) $f(A \cap B) \subset f(A) \cap f(B)$;

c) $f(A \cup B) = f(A) \cup f(B)$.

2) Chúng minh ràng nếu f là đơn ánh thì

 $f(A \cap B) = f(A) \cap f(B).$

1.22. Cho 2 tập E và F và ánh xạ $f : E \rightarrow F$.

A và B là 2 tập con của F, chứng minh

a) $A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$;

b) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

1.23. Cho
$$f : E \to F$$
; $g : F \to G$

Chúng minh rằng :

1) Nếu f và g là toàn ánh thì gof là toàn ánh ;

Nếu f và g là đơn ánh thỉ $g_{0}f$ là đơn ánh ;

Nếu f và g là song ánh thì gof là song ánh.

2) Nếu gof là song ánh và f là toàn ánh thỉ f và g là song ánh. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

1.24. Với mỗi bộ 4 số nguyên a, b, c, d sao cho ad - bc = 1, ta cho ánh xạ $f : \mathbb{Z}^2 \to \mathbb{Z}^2$ xác định bởi

 $f: (x, y) \mapsto (ax + by, cx + dy)$

và gọi F là tập các ánh xạ như thế.

a) Chúng minh rằng f là song ánh và $f^{-1} \in F$.

b) Chúng minh rằng nếu f và $g \in F$ thì fog $\in F$.

1.6. TẬP HỮU HẠN - TẬP ĐẾM ĐƯỢC -TẬP KHÔNG ĐẾM ĐƯỢC

1.25. 1) Chứng minh rằng hợp của hai tập hữu hạn là một tập hữu hạn.

2) Chứng minh rằng hợp của một số đếm được các tập hữu hạn là một tập đếm được.

1.26. Cho tập E, gọi $\mathcal{P}(E)$ là tập tất cả các tập con của E. Chứng minh rằng $\mathcal{P}(E)$ không cùng lực lượng với E.

1.7. ĐẠI SỐ TỔ HỢP

1.27. Cho $A = \{a, b\}$. Có thể lập được bao nhiêu bảng khác nhau có dạng

	a	ь
a	α	β
ь	γ	δ

trong đó α , β , γ , $\delta \in A$?

1.28. a) Có bao nhiêu số có 5 chữ số ?

b) Có bao nhiêu số có 5 chữ số mà các chữ số đều khác nhau ?

1.29. Tìm số tất cả các tập con của một tập gồm n phần tử, kể cả tập rồng.

1.30. Cho các hoán vị P và Q của {1 2 3 4} :

 $P = \{3 \ 4 \ 1 \ 2\}, \ Q = \{2 \ 4 \ 1 \ 3\}$ mà ta kí hiệu như sau : 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 10

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \qquad Q = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

The PoQ, QoP, P^{-1} va Q^{-1} .

1.31. Cho n điểm khác nhau trong mặt phẳng sao cho ba điểm bất kỉ không thẳng hàng. Xét các đoạn thẳng nối từng cặp hai điểm khác nhau.

- a) Tính số các đoạn thẳng đó.
- b) Tính số các tam giác được tạo nên.
- c) Ứng dụng cho các trường hợp riêng :

n = 3, n = 4, n = 5.

1.32. Chứng minh

a) 1 -
$$C_n^1$$
 + C_n^2 - ... + (-1)^p C_n^p = (-1)^p C_{n-1}^p

(b)
$$\sum_{i=0}^{n} C_n^i = 2^n$$

(c) $\sum_{i=0}^{n} (-1)^i C_n^i = 0.$

н

1.33. Tìm số hạng lớn nhất trong khai triển của nhị thức $(37 + 19)^{31}$

B. BÀI GIẢI VÀ HƯỚNG DẤN

 1.1. Tam giác cân := tam giác có hai góc bằng nhau. Tam giác có hai cạnh bằng nhau ⇒ tam giác cân. Tam giác có hai cạnh bằng nhau ⇔ tam giác cân.

1.2. Bằng cách giải các phương trình và bất phương trình ta thu được : a) $\{1, 3\}$; b) $(-\infty, 1) \cup (3, +\infty)$; c) [1, 3]; d) \emptyset ; e) $(-\infty, +\infty)$; f) \emptyset .

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

1.3. Bằng cách giải các hệ phương trình và bất phương trình ta suy ra :

- a) $\{(2, 1)\}$;
- b) $\{(x, y) \mid x \text{ tùy } y, y = 3x 2\}$ đường thẳng y = 3x 2.
- c) $\{(x, y) \mid x \text{ tùy } y, y = 3x\}$ đường thẳng y = 3x.
- d) $\{(x, y) | x \text{ tùy } y, y < 3x\}$.

Các điểm (x, y) nằm dưới đường thẳng y = 3x.

e) $\{(x, y) \mid x \text{ tùy } y, y > 3x\}$.

Các điểm (x, y) nằm trên đường thẳng y = 3x.

1.4. a) Ta nhận thấy

1) $x \in A \Rightarrow x \ge 0 \Rightarrow x = |x| \Rightarrow x \in B$ nghĩa là $x \in A \Rightarrow x \in B$, vậy $A \subset B$.

2) $x \in B \Rightarrow x \ge |x| \ge 0 \Rightarrow x \in A$, nghĩa là $x \in B \Rightarrow x \in A$, vậy $B \subset A$.

Do đó A = B.

b) Xét x < 0. Khi đó vì x < 0 nên $x \notin A$. Nhưng cũng vì $x \leq 0$ nên x < |x|, do đó $x \in B$. Vậy $A \neq B$.

c) Giả sử $n \in \mathbb{N}$. Chia n cho 12 ta được n = 12p + r $p \in \mathbb{N}, r \in S := \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$ Do đó

 $n^3 = (12p)^3 + 3(12p)^2r + 3(12p)r^2 + r^3 = 12k + r^3, k \in \mathbb{N}.$ Vì 12k là một số nguyên chẵn và chia hết cho 3 nên

$$n \in A \Leftrightarrow r \in A.$$

Nhưng bằng cách thủ trực tiếp với mọi $r \in S$ ta thấy

$$r \in A \Leftrightarrow r \in T := \{1, 5, 7, 11\}.$$

Vậy có $n \in A \Leftrightarrow r \in T$

Mặt khác $n^2 = (12p)^2 + 2(12p)r + r^2 = 24h + r^2$, $h \in \mathbb{N}$. Vì 24h chia hết cho 24 nên

Nhưng bằng cách thủ trực tiếp với mọi $r \in S$ ta thấy

 $r \in B \Leftrightarrow r \in T$

Vậy có $n \in B \Leftrightarrow r \in T$

Tốm lại $n \in A \Leftrightarrow r \in T \Leftrightarrow n \in B$, tức là $n \in A \Leftrightarrow n \in B$, nên A = B.

Chú ý. Theo cách giải trên thì không cần hạn chế $n \leq 100$. Nhưng nếu hạn chế $n \leq 100$ thì có thể giải bài toán bằng cách liệt kê các phần tử của hai tập A và B. Tuy nhiên cách làm này dài.

1.5.
$$x \in C \Rightarrow x \in A \cup C \subset A \cup B \Rightarrow x \in A \cup B$$

 $\Rightarrow x \in A$ hay $x \in B$.
Nếu $x \in A$ thì $x \in A \cap C \subset A \cap B \Rightarrow x \in B$.
Vây có
 $x \in C \Rightarrow x \in B$, nghĩa là $C \subset B$.
1.6. Dùng biểu đó Ven (hình 1),
ta thấy ngay
 $\overline{(A)} = A$; $A \cap \overline{A} = \emptyset$;
 $A \cup \overline{A} = E$.
Ngoài ra
 $\overline{\emptyset} = E, \overline{E} = \emptyset$.
Hinh 1
Hinh 1

1.7. a) $x \in B \Rightarrow x \in A$ vì nếu $x \notin A$ tức là $x \in A$, do đó theo giả thiết $A \subset B$ ta có $x \in B$, điều này trái với giả thiết $x \in \overline{B}$. Vậy đúng là $x \in \overline{B} \Rightarrow x \in \overline{A}$, nghĩa là $\overline{B} \subset \overline{A}$.

b) Xét $x \in E$. Khi đó $x \in A$ hoặc $x \in \overline{A}$ (vì $A \cup \overline{A} = E$). Nếu $x \in A$ thì $x \notin B$ (vì $A \cap B = \emptyset$), tức là $x \in \overline{B}$. Vậy : $x \in E \Rightarrow x \in \overline{A}$ hoặc $x \in \overline{B}$ khi $A \cap B = \emptyset$.

c) Để giải bài toán này ta chứng minh ba mệnh đế sau :

(i) $A \subset B \Rightarrow A \cup B = B$

(ii)
$$A \cup B = B \Rightarrow \overline{A} \cup B = E$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

(iii) $\overline{A} \cup B = E \Rightarrow A \subset B$.

Kết quả (i) rõ ràng nhờ biểu đồ Ven.

Để chứng minh kết luận của (ii), trước hết ta chú ý rằng vì $\overline{A} \subset E, \ B \subset E$ nên

. . .

 $\overline{A} \cup B \subset E$

Sau đó, xét $x \in E$ thì $x \in B$ hoặc $x \in \overline{B}$; nếu $x \in \overline{B}$ thì $x \notin B = A \cup B$ nên $x \notin A^{\sim}$ Do đó $x \in \overline{A}$. Vậy $E \subset \overline{A} \cup B$ và từ đó suy ra kết quả (ii).

Dể chứng minh kết luận của (iii), ta xét $x \in A$. Ta có $x \in E = \overline{A} \cup B$. Nhưng vì $x \in A$ nên $x \notin \overline{A}$. Vậy $x \in B$, nghĩa là : $x \in A \Rightarrow x \in B$. Do đó $A \subset B$.

d) Để giải bài toán này ta chứng minh ba mệnh để sau :

- (i) $A \subset B \Rightarrow A \cap B = A$
- (ii) $A \cap B = A \Rightarrow A \cap \overline{B} = \emptyset$
- (iii) $A \cap \overline{B} = \emptyset \Rightarrow A = B$

Kết quả (i) rõ ràng nhờ sơ đồ Ven.

Để chứng minh kết luận của (ii), trước hết ta xét $x \in A$. Ta có

 $x \in A = A \cap B \Rightarrow x \in B \Rightarrow x \notin \overline{B}.$

Vậy $A \cap \overline{B} \approx \emptyset$.

Dể chúng minh kết luận của (iii) ta xét $x \in A$. Khi đó vì $A \cap \overline{B} = \emptyset$ nên $x \notin \overline{B}$. Do đó $x \in B$. Vậy : $x \in A \Rightarrow x \in B$, nghĩa là $A \subset B$.

e) $x \in \overline{A} \cup \overline{B} \Rightarrow x \in \overline{A}$ hoạc $x \in \overline{B}$. Nếu $x \in \overline{A}$ thì $x \notin A \Rightarrow x \notin A \cap B$. Nếu $x \in \overline{B}$ thì $x \notin B \Rightarrow x \notin A \cap B$. Vậy :

 $x \in \overline{A} \cup \overline{B} \Rightarrow x \notin A \cap B \Rightarrow x \in \overline{A \cap B}$

Ngược lại

 $x \in \overline{A \cap B} \Rightarrow x \notin A \cap B$

www.VNMATH.com

Nếu $x \in A$ thì $x \notin B \Rightarrow x \in \overline{B} \Rightarrow x \in \overline{A} \cup \overline{B}$. Nếu $x \in B$ thì $x \notin A \Rightarrow x \in \overline{A} \Rightarrow x \in \overline{A} \cup \overline{B}$. Nếu $x \notin A$ và $x \notin B$ thì $x \in \overline{A}$ và $x \in \overline{B} \Rightarrow x \in \overline{A} \cup \overline{B}$. Nếu $x \notin A$ và $x \notin B$ thì $x \in \overline{A}$ và $x \in \overline{B} \Rightarrow x \in \overline{A} \cup \overline{B}$. Vậy : $x \in \overline{A \cap B} \Rightarrow x \in \overline{A} \cup \overline{B}$. Tóm lại :

 $\overline{A} \cup \overline{B} = \overline{A \cap B}$

f) $x \in \overline{A} \cap \overline{B} \Rightarrow x \in \overline{A} \text{ và } x \in \overline{B}$ $x \in \overline{A} \Rightarrow x \notin A$ $x \in \overline{B} \Rightarrow x \notin B.$ Vậy $x \notin A \cup B$. Do đó $x \in \overline{A \cup B}$, $\overline{A} \cap \overline{B} \subset \overline{A \cup B}$

Ngược lại

 $x \in \overline{A \cup B} \Rightarrow x \notin A \cup B \Rightarrow x \notin A \text{ và } x \notin B.$ $x \notin A \Rightarrow x \in \overline{A}$ $x \notin B \Rightarrow x \in \overline{B}.$

Vậy

 $x \in \overline{A \cup B} \Rightarrow x \in \overline{A}$ và $x \in \overline{B}$

nghĩa là $x \in \overline{A} \cap \overline{B}$. Do đó

$$\overline{A \cup B} \subset \overline{A} \cap \overline{B}$$

Vậy có kết luận của f).

1.8. $\{(1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$

Các điểm có tọa độ như trên.

1.9. Hình chữ nhật có 4 đỉnh là (1, 2), (1, 3), (2, 2), (2, 3).

1.10. Theo đầu bài, với $a \in \mathbf{R}, b \in \mathbf{R}$ ta có quan hệ

$$a \mathcal{R}b \Leftrightarrow a^3 - b^3 = a - b \tag{1.1}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Quan hệ này có tính phản xạ $a \ \mathcal{R} a$ vì ta luôn có $a^3 - a^3 = a - a$

Quan hệ này có tính đối xứng vì từ a \mathcal{R} b tức là

ta suy ra $a^{3} + b^{3} = a - b$ $b^{3} - a^{3} = b - a \text{ túc là } b \mathcal{R} a.$

Quan hệ này có tính bắc câu vì từ

 $a \mathcal{R} \vec{b}$ tức là $a^3 - b^3 = a - b$, $b \mathcal{R} c$ tức là $b^3 - c^3 = b - c$,

ta suy ra

$$a^3 - c^3 = a - c$$
 tức là $a \mathcal{R} c$.

Vậy quan hệ (1.1) là quan hệ tương đương.

Bây giờ xét lớp tương đương $\mathcal{C}(a, \mathcal{R})$. Nó gồm những $b \in \mathbf{R}$ sao cho b \mathcal{R} a, tức là

$$b^3 - a^3 = b - a$$

hay

$$(b-a)[b^2+ab+a^2-1] = 0$$

Vây lớp tương đương $\mathcal{E}(a, \mathcal{R})$ trước hết gồm phần tử b = a, sau đó là các phần tử b sao cho

$$b^2 + ab + a^2 - 1 = 0.$$

Đó là một phương trình bậc hai đối với b.

Do đó quan hệ cho ở đầu bài là quan hệ tương đương và lớp tương đương $\mathcal{E}(a, \mathcal{R})$ xác định bởi :

Nếu $|a| < 2\sqrt{3}$ và $|a| \neq 1/\sqrt{3}$ thì $\mathcal{E}(a, \mathcal{R}) = \{a \text{ và hai nghiệm của phương trình } x^2 + ax + a^2 - 1 = 0\}.$

Nếu $|a| = 2/\sqrt{3}$ thì $\mathcal{E}(a, \mathcal{R}) = \{a \text{ và nghiệm kép của phương trình trên}\}.$

Néu $|a| > 2/\sqrt{3}$ thi $\mathcal{C}(a, \mathcal{R}) = \{a\}$.

Néu $|a| = 1/\sqrt{3}$ thi $\mathcal{C}(a, \mathcal{R}) = \{a, -2a\}.$

1.11. a) Quan hệ này không đối xứng vì khi a chia hết cho b thì nói chung b không chia hết cho a, vậy quan hệ này không phải là quan hệ tương đương.

b) Quan hệ này không bắc cầu vì khi a không nguyên tố với b, b không nguyên tố với c thì chưa hẳn là a không nguyên tố với c. Thí dụ :

$$a = 5, b = 15, c = 3.$$

Vậy quan hệ này không phải là quan hệ tương đương.

1.12. a) Quan hệ này rõ ràng có tính phản xạ, đối xứng và bắc cấu, cho nên nó là một quan hệ tương đương. Mỗi lớp tương đương là một đường thẳng cùng phương với D. Tập các lớp tương đương gồm tất cả các đường thẳng cùng phương với D.

b) Quan hệ này rõ ràng có tính phản xạ, đối xứng và bắc cầu, cho nên nó là một quan hệ tương đương. Mỗi lớp tương đương là một đường tròn tâm O. Tập các lớp tương đương là tất cả các đường tròn tâm O.

1.13. Quan hệ này không phản xạ vì D không $\perp D$, không bắc cấu vì $D \perp D'$, $D' \perp D''$ thì chưa chắc $D \perp D''$. Vậy quan hệ này không phải là quan hệ tương đương.

1.14. Xét các cặp (x, y), (x', y'), (x'', y'') của **R**.

 $Vi x = x, y = y n \hat{e} n$

$$(x, y) = (x, y)$$

nghĩa là quan hệ có tính phản xạ.

Nếu $(x, y) \leq (x', y')$ tức là $x \leq x', y \leq y'$

 $(x', y') \leq (x, y)$ tức là $x' \leq x, y' \leq y$

thì x = x', y = y' tức là

$$(x, y) = (x', y')$$

nghĩa là quan hệ có tính phản đối xứng.

Nếu $(x, y) \leq (x', y')$ tức là $x \leq x', y \leq y'$

$$(x', y') \leq (x'', y'')$$
 tức là $x' \leq x'', y' \leq y''$

thì

$$x \leq x^{\prime\prime}, y \leq y^{\prime\prime}$$

tức là

 $(x, y) \leq (x'', y'')$

nghĩa là quan hệ có tính bắc câu. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 2-BT.TCC.T1 17 Vậy quan hệ đang xét là một quan hệ thứ tự.

Nhưng nó không phải là quan hệ thứ tự toàn phần trên \mathbf{R}^2 vì chẳng hạn hai cặp (1, 2) và (2, 1) không so sánh được : không có (1, 2) \leq (2, 1) cũng không có (2, 1) \leq (1, 2):

1.15. Xét ba thí sinh có ba cặp điểm $(x_1, y_1), (x_2, y_2), (x_3, y_3)$.

Vì $x_1 = x_1$, $y_1 = y_1$ nên $(x_1, y_1) \mathcal{R}(x_1, y_1)$. Vậy quan hệ \mathcal{R} có tính phản xạ.

Bây giờ để chứng minh tính phản đối xứng ta giả sử :

 $(x_1, y_1) \mathcal{R} (x_2, y_2)$ và $(x_2, y_2) \mathcal{R} (x_1, y_1)$.

 $(x_1, y_1) \mathcal{R} (x_2, y_2) \Leftrightarrow \text{hoặc } x_1 < x_2, \text{ hoặc } x_1 = x_2, y_1 \leq y_2$ $(x_2, y_2) \mathcal{R} (x_1, y_1) \Leftrightarrow \text{hoặc } x_2 < x_1, \text{ hoặc } x_2 = x_1, y_2 \leq y_1$ Như vậy, $x_1 \leq x_2$ và $x_2 \leq x_1$, do đó $x_1 = x_2$.

Khi đó lại có $y_1 \leq y_2$ và $y_2 \leq y_1$, do đó $y_1 = y_2$.

Vậy từ $(x_1, y_1) \mathcal{R} (x_2, y_2)$ và $(x_2, y_2) \mathcal{R} (x_1, y_1)$, ta suy ra $(x_1, y_1) = (x_2, y_2)$. Đó là tính phản đối xứng của \mathcal{R} .

Bây giờ đến tính bắc câu.

Giả sử $(x_1, y_1) \mathcal{R} (x_2, y_2)$ và $(x_2, y_2) \mathcal{R} (x_3, y_3)$.

 $(x_1, y_1) \mathcal{R} (x_2, y_2)$ có nghĩa là $x_1 \le x_2$, và nếu $x_1 = x_2$ thì $y_1 \le y_2$.

 $(x_2, y_2) \ \mathcal{R} (x_3, y_3)$ có nghĩa là $x_2 \leq x_3$, và nếu $x_2 = x_3$ thì $y_2 \leq y_3$

Như vậy, từ $(x_1, y_1) \mathcal{R} (x_2, y_2)$ và $(x_2, y_2) \mathcal{R} (x_3, y_3)$ ta suy ra :

$$x_1 \leq x_2, x_2 \leq x_3 \Rightarrow x_1 \leq x_3$$

và nếu $x_1 = x_3$ thì $x_1 = x_2 = x_3$ nên ta vừa có $y_1 \le y_2$ vừa có $y_2 \le y_3$, vậy có $(x_1, y_1) \mathcal{R}(x_3, y_3)$. Do đó

 $(x_1, y_1) \mathcal{R}(x_2, y_2)$ và $(x_2, y_2) \mathcal{R}(x_3, y_3) \Rightarrow (x_1, y_1) \mathcal{R}(x_3, y_3)$. Đó là tính bắc cầu của \mathcal{R}

Vậy \mathcal{R} là một quan hệ thủ tự trong tập các thí sinh. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 18 10°

Bây giờ muốn biết nó có phải là một quan hệ thứ tự toàn phần hay không ta xét hai thỉ sinh bất kỉ với các cập điểm (X_1, Y_1) và (X_2, Y_2) .

Trước hết ta so sánh X_1 và X_2 . Nếu $X_1 < X_2$ thì $(X_1, Y_1) \mathcal{R} (X_2, Y_2)$ Nếu $X_1 > X_2$ thì $(X_2, Y_2) \mathcal{R} (X_1, Y_1)$ Nếu $X_1 = X_2$ thì ta so sánh tiếp Y_1 với Y_2 Nếu $Y_1 \leq Y_2$ thì $(X_1, Y_1) \mathcal{R} (X_2, Y_2)$ Nếu $Y_1 > Y_2$ thì $(X_2, Y_2) \mathcal{R} (X_1, Y_1)$

Vậy hai thí sinh bất kỉ bao giờ cũng so sánh được. Do đó quan hệ thứ tự đang xét là một quan hệ thứ tự toàn phần.

1.16. 1) Xét phương trình $f(x) = y \in B$ tức là

 $x + 7 = y, \quad x \in A$

Với $y \in B$ cho trước nó có không quá một nghiệm, vậy f là đơn ánh.

Với mọi $y \in B$ nó luôn có nghiệm, vậy f là toàn ánh.

Do đó f là song ánh.

Ánh xạ ngược là $x = f^{-1}(y) = y - 7$.

2) Xét phương trình $f(x) = y \in B$ tức là

 $x^2+2x-3=y, x\in A$

Đây là một phương trình bậc hai đối với x

 $x^2 + 2x - (3 + y) = 0$

Có biệt số

 $\Delta^{2} = 1 + (3 + y) = 4 + y.$

Nếu 4 + y > 0 tức là nếu y > -4 thì phương trình có hai nghiệm khác nhau. Vậy f không phải đơn ánh.

Nếu 4 + y < 0 tức là nếu y < -4 thì phương trình không có nghiệm thực. Vậy f không phải toàn ánh.

Do do f không phải song ánh, không có ánh xạ ngược. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 19 3) Xết hàm số $y = f(x) = x^2 + 2x - 3$. Nó có bảng biện thiện

Khi x tàng từ 4 đến 9 thì y tãng liên tục từ 21 đến 96. Vậy phương t**s**ình

$$x^2 + 2x - 3 = y \in [21, 96] = B$$

có một và chỉ một nghiệm

$$x = -1 + \sqrt{4 + y} \in [4, 9] = A.$$

Do đó ánh xạ vừa là toàn ánh, vừa là đơn ánh, nên là song ánh và có ánh xạ ngược là

$$f^{-1}(\mathbf{y}) = -1 + \sqrt{4 + \mathbf{y}}$$

4) Xét hàm số y = f(x) = 3x - 2|x|. Nó có thể biểu diễn bởi

$$y = \begin{cases} 3x - 2x = x & \text{khi } x \ge 0\\ 3x + 2x = 5x & \text{khi } x \le 0 \end{cases}$$

và có bảng biến thiên

Khi x tāng từ -∞ đến +∞ thì y tăng liên tục từ -∞ đến +∞. Vậy phương trình

$$f(x) = y \in (-\infty, +\infty) = B$$

có một và chỉ một nghiệm $x \in (-\infty, +\infty) = A$.

Do đó f vừa là toàn ánh, vừa là đơn ánh nên là song ánh và có ánh xa ngược

$$f^{-1}(y) = \begin{cases} y, & y \ge 0\\ 1\\ 5 & y, & y < 0 \end{cases}$$

www.VNMATH.com

5) Xết hàm số $y = f(x) = e^{x+1} = e e^x$. Nó có bảng biến thiên $x -\infty +\infty$ $y +\infty$ 0^+

Khi x tăng từ -∞ đến +∞ thì y tăng liên tục từ 0⁺ đến +∞. Vậy phương trình

$$f(x) = y \in (0, +\infty) = B$$

có một và chỉ một nghiệm $x \in (-\infty, +\infty) = A$.

Do đó f vừa là toàn ánh, vừa là đơn ánh, nên là song ánh và có ánh xạ ngược thu được bằng cách giải phương trình.

$$e.e^x = y$$

tức là

$$f^{-1}(y) = \ln y - 1.$$

6) Phương trình f(x) = y viết

 $x(x+1) = y \in B = \mathbf{N}.$

Xem x là một ẩn số thực thì khi $\Delta = 1 + 4y \ge 0$ phương trình có nghiệm thực

$$x = \frac{-1 \pm \sqrt{1+4y}}{2}$$

Khi 1 + 4y là một bình phương của một số nguyên lẻ như khi y = 6, 12, v.v... thỉ chỉ có một giá trị $x = (-1 + \sqrt{1 + 4y})/2$ là số nguyên ≥ 0 . Khi 1 + 4y không phải là bình phương của một số nguyên lẻ như khi y = 3, 5 v.v... thì xkhông phải là số nguyên ≥ 0 .

Vậy f là đơn ánh, không phải là toàn ánh, nên không phải là song ánh, không có ánh xạ ngược.

1.17. Tất cả đều là song ánh.

1) Ánh xạ ngược trùng với nó.

2) Anh xa ngược là tinh tiến theo vecto -a. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

3) Ánh xạ ngược là quay quanh tâm O một gốc $-\theta$.

4) Ánh xạ ngược là vị tự tâm O với tỉ số $\frac{1}{k}$.

1.18. a) Xét hàm số -

$$y = f(x) = \frac{2x}{1+x^2}$$

có đạo hàm

$$y' = \frac{2(1-x^2)}{(1+x^2)^2}$$

và có bảng biến thiên

x	-∞	-1	+1	+-00
y ' [†]		- 0	+ 0	-
У	0		1	
5		1		- 0

Dựa vào bảng biến thiên ta thấy phương trình

$$f(x) = y$$
 tức là $\frac{2x}{1+x^2} = y \in \mathbf{R}$

có tới hai nghiệm khác nhau khi -1 < y < 1 và không có nghiệm nào khi y < -1 hay y > 1.

Vậy f không phải đơn ánh, không phải toàn ánh, đồng thời $f(\mathbf{R}) = [-1, 1].$

b) Ta có $x \in \mathbf{R}^* \Rightarrow 1/x \in \mathbf{R}$ và

$$(f \circ g)(x) = f[g(x)] = f\left(\frac{1}{x}\right) = \frac{2/x}{1 + (1/x)^2}$$
$$= \frac{2x}{1 + x^2} = f(x)$$
$$f \circ g = f.$$

Vây

1.19. Néu $x \in \mathbf{R}_+$ thi $(f \circ g)(x) = f[g(x)] = f(\sqrt{x}) = |\sqrt{x}| = \sqrt{x}$ $(g \circ f)(x) = g[f(x)] = g(|x|) = \sqrt{|x|} = \sqrt{x}$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 22

www.VNMATH.com

nghĩa là khi $x \in \mathbf{R}_{i}$ $(f_0g)(x) = (g_0f)(x)$ Nhưng khi x < 0 thì $(g_0 f)(x) = \sqrt{|x|}$ còn (fog) không xác định. Vây fog ≠ gof. **1.20.** Xét $x \in A$ ta có $[h_0(g_0f)](x) = h[(g_0f)(x)] = h[g[f(x)]]$ $[(h_{0}g)_{0}f](x) = (h_{0}g)[f(x)] = h[g[f(x)]]$ Vây $h_0(g_0f) = (h_0g)_0f$. 1.21. 1) a) Ta phải chứng minh 1) $A \subset B \Rightarrow f(A) \subset f(B)$, 2) $f(A) \subset f(B) \Rightarrow A \subset B$. Chúng minh 1) : $y \in f(A)$ thì tồn tại $x \in A$ để f(x) = y; $x \in A \Rightarrow x \in B$ (vì $A \subset B$); vậy tồn tại $x \in B$ để f(x) = y; do đó $y \in f(B)$. Vậy $f(A) \subset f(B)$. Chúng minh 2) : Xét $x \in A$ thì $f(x) = y \in f(A)$; nhưng $f(A) \subset f(B)$ nên $f(x) = y \in f(B)$, ta suy ra $x \in B$. Vậy A = B. b) Giả sử $y \in f(A \cap B)$ thì $\exists x \in A \cap B$ để f(x) = y. Khi đó : $vi x \in A$ nên $f(x) = y \in f(A)$ đồng thời vì $x \in B$ nên $f(x) = y \in f(B)$. Do đó $f(x) = y \in f(A) \cap f(B).$ Vây $f(A \cap B) \subset f(A) \cap f(B).$ c) Xét $y \in f(A \cup B)$ khi đó $\exists x \in A \cup B$ để f(x) = y.

Khi đó, nếu $x \in A$ thì $f(x) = y \in f(A)$;

neu x ∈ B thì $f(x) = y \in f(B)$; 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

nghĩa là ta luôn có

 $f(x) = y \in f(A) \cup f(B).$

Vậy

 $f(A \cup B) \subset f(A) \cup f(B).$

Ngược lại, xét $y \in f(A) \cup f(B)$. Khi đó nếu $y \in f(A)$ thì $\exists x \in A$ để f(x) = y;

nếu $y \in f(B)$ thì $\exists x \in B$ để f(x) = y; là ta kiếz st

nghĩa là ta luôn có

 $\exists x \in A \cup B \text{ de } f(x) = y.$

Vậy

 $f(x) = y \in f(A \cup B).$

Do đó

 $f(A) \cup f(B) \subset f(A \cup B).$

Kết quả là

 $f(A \cup B) = f(A) \cup f(B)$

2) Ở câu 1. b) ta đã chứng minh

 $f(A \cap B) \subset f(A) \cap f(B).$

Bây giờ giả sử f là đơn ánh.

Xét $y \in f(A) \cap f(B)$. Khi đó

 $y \in f(A) \text{ tức là } \exists x_1 \in A \text{ dể } f(x_1) = y,$ đồng thời

 $y \in f(B)$ tức là $\exists x_2 \in B$ để $f(x_2) = y$. Vì f là đơn ánh nên tả suy ra $x_1 = x_2$. Vậy $\exists x = x_1 = x_2 \in A \cap B$ để f(x) = y. Do đó $y \in f(A \cap B)$, nghĩa là $f(A) \cap f(B) \subset f(A \cap B)$. Kết quả là : khi f đơn ánh tả có $f(A \cap B) = f(A) \cap f(B)$

 $f(A \cap B) = f(A) \cap f(B)$. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 24 **1.22.** a) Xét $x \in f^{-1}(A)$. Khi đó $x \in E$ và $f(x) = y \in A$, nhưng $A \subset B$, do đó $f(x) = y \in B \Rightarrow x \in f^{-1}(B)$, vậy có $f^{-1}(A) \subset f^{-1}(B)$ và câu a) được chứng minh.

b) Xét $x \in f^{-1}(A \cap B)$ tức là $x \in E$ và $f(x) = y \in A \cap B$. Khi đó

 $f(x) = y \in A \Rightarrow x \in f^{-1}(A),$

đồng thời

$$f(\mathbf{x}) = \mathbf{y} \in B \Rightarrow \mathbf{x} \in f^{-1}(B).$$

Vây

 $x \in f^{-1}(A) \cap f^{-1}(B),$

tức là

$$f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$$

Ngược lại, xét $x \in f^{-1}(A) \cap f^{-1}(B)$ nghĩa là

$$x \in f^{-1}(A) \Rightarrow f(x) = y \in A,$$

đồng thời

$$x \in f^{-1}(B) \Rightarrow f(x) = y \in B.$$

Vậy

 $f(\mathbf{x}) = \mathbf{y} \in A \cap B.$

Do đó

 $x \in f^{-1}(A \cap B).$

Vậy

$$f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B).$$

Kết quả là câu b) được chứng minh.

1.23. 1) Giả thiết f và g là toàn ánh :

$$f(E) = F, g(F) = G.$$

Ta suy ra

$$(g_0 f)(\dot{E}) = g[f(E)] = g(F) = G$$

Vậy gof là toàn ánh.

Bây giờ giả thiết f và g là đơn ánh. Xết x_1 và $x_2 \in E$. Ta cớ

$$x_1 \in E, f(x_1) = y_1 \in F, g(y_1) = z_1 \in G$$

$$x_2 \in E, f(x_2) = y_2 \in F, g(y_2) = z_2 \in G$$

và

$$(gof)(x_1) = g[f(x_1)] = g(y_1) = z_1;$$

$$(gof)(x_2) = g[f(x_2)] = g(y_2) = z_2.$$

Giả sử $z_1 = z_2$.

Vì g là đơn ánh nên $y_1 = y_2$. Từ đó, vì f là đơn ánh nên $x_1 = x_2$. Vậy từ $(gof)(x_1) = (gof)(x_2)$ ta suy ra $x_1 = x_2$. Do đó gof là đơn ánh.

Từ hai kết quả trên ta suy ra :

Nếu f và g là song ánh thì gof cũng là song ánh.

2) Chứng minh f là đơn ánh.

Giả sử f không phải đơn ánh ; tức là tồn tại x_1 và $x_2 \in E$ sao cho $x_1 \neq x_2$, đồng thời $f(x_1) = f(x_2)$. Ta suy ra

 $(g_0f)(x_1) = g[f(x_1)] = g[f(x_2)] = (g_0f)(x_2),$

tức là

$$(g_0 f)(x_1) = (g_0 f)(x_2).$$

Vì (gof) theo giả thiết là đơn ánh nên từ đẳng thức trên ta thu được $x_1 = x_2$; điều này trái với giả định $x_1 \neq x_2$ ở trên. Vậy f là đơn ánh.

Theo giả thiết f đã là toàn ánh, vậy f là song ánh.

Chúng minh g là toàn ánh.

Vì f là toàn ánh nên f(E) = F.

Vì gof là toàn ánh nên $(g_{of})(E) = G$.

Ta suy ra

$$G = (g \circ f)(E) = g[f(E)] = g(F),$$

nghĩa là

$$g(F) = G.$$

Vậy g là toàn ánh.

Chứng minh g là đơn ánh.

Giả sử g không phải đơn ánh, tức là tồn tại y_1 và $y_2 \in F$ sao cho $y_1 \neq y_2$, $g(y_1) = g(y_2)$.

Vì f là toàn ánh nên

$$\exists x_1 \in E \text{ de } f(x_1) = y_1;$$

 $\exists x_2 \in E \text{ de } f(x_2) = y_2.$

www.VNMATH.com

Ta co

$$g(y_1) = g[f(x_1)] = (g_0 f)(x_1);$$

$$g(y_2) = g[f(x_2)] = (g_0 f)(x_2).$$

 $V_i g(y_1) = g(y_2)$ nên

$$(g_0f)(x_1) = (g_0f)(x_2).$$

Vì gof là đơn ánh nên từ đẳng thức trên ta thu được $x_1 = x_2$. Nhưng

$$x_1 = x_2 \Rightarrow f(x_1) = f(x_2),$$

tức là y₁ = y₂, điều này trái giả định y₁ ≠ y₂ ở trên. Vậy g là đơn ánh.

Ta đã chứng minh được g là toàn ánh. Do đó g là song ánh.

1.24. Ánh xạ f có thể mô tả như sau :

$$f((\mathbf{x}, \mathbf{y})) = (\mathbf{X}, \mathbf{Y})$$

với

$$\begin{array}{l} ax + by = X \\ cx + dy = Y \end{array}$$
(1.2)

và

 $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc = 1.$

a) Vì $\Delta = 1 \neq 0$, nên khi X và Y xem là đã biết thì hệ (1.2) luôn có một và chỉ một nghiệm (x, y). Do đó f vừa là toàn ánh (vì hệ (1.2) luôn có nghiệm) vừa là đơn ánh (vì hệ (1.2) có không quá một nghiệm). Vậy f là một song ánh.

Muốn có f^{-1} ta giải hệ (1.2) đối với x, y :

$$x = \frac{\begin{vmatrix} X & b \\ Y & d \end{vmatrix}}{\Delta} = dX - bY;$$

$$y = \frac{\begin{vmatrix} a & X \\ c & Y \end{vmatrix}}{\Delta} = -cX + aY$$

Vậy

 $f^{-1}((X, Y)) = (x, y)$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 27

8.000 A

với

$$dX - bY = x$$
$$-cX + aY = y$$

và

$$\begin{vmatrix} d & -b \\ -c & a \end{vmatrix} = ad - bc = 1.$$

Do đó

$$f^{-1} \in F$$
.

b) Bây giờ giả sử f và $g \in F$: f((x, y)) = (ax + by, cx + dy), ad - bc = 1;

$$g((x, y)) = (\alpha x + \beta y, \gamma x + \delta y), \ \alpha \delta - \beta \gamma = 1.$$

Ta phải chứng minh fog \in F. Ta có

$$(f \circ g)((x, y)) = f[g((x, y))].$$

Do đó

$$(f \circ g)((x, y)) = f((\alpha x + \beta y, \gamma x + \delta y)) =$$

= $(a(\alpha x + \beta y) + b(\gamma x + \delta y)), c(\alpha x + \beta y) + d(\gamma x + \delta y))$
= $((a\alpha + b\gamma))x + (a\beta + b\delta)y, (c\alpha + d\gamma)x + (c\beta + d\delta)y)$
= (x', y')

với 🗉

$$x' = (a\alpha + b\gamma)x + (a\beta + b\delta)y;$$

$$y' = (c\alpha + d\gamma)x + (c\beta + d\delta)y.$$

Xét định thức

$$D = \begin{vmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{vmatrix}$$
$$D = \begin{bmatrix} a\alpha + b\gamma (c\beta + d\delta) - (a\beta + b\delta)(c\alpha + d\gamma) \\ = a\alpha c\beta + a\alpha d\delta + b\gamma c\beta + b\gamma d\delta - a\beta c\alpha - a\beta d\delta - b\delta c\alpha - b\delta d\gamma \\ = a\alpha d\delta - a\beta d\delta + b\gamma c\beta - b\delta c\alpha \\ = ad(\alpha\delta - \beta\gamma) + bc(\gamma\beta - \alpha\delta) \\ = ad - bc = 1.$$

Vây
$$fog \in F.$$

1.25. 1) Giả sử A có n phần tử, B có m phần tử

$$A = \{x_1, x_2, ..., x_n\}$$

$$B = \{y_1, y_2, ..., y_m\}$$

Khi đó $A \cup B$ có nhiều nhất n + m phần tử, nên nó là một tập hữu hạn.

2) Già sử

$$A_1, A_2, ..., A_m, ...$$

là các tập hữu hạn, A_i có n_i phần tử :

$$A_{1} = \{x_{11}, x_{12}, ..., x_{1n_{1}}\}$$

$$A_{2} = \{x_{21}, x_{22}, ..., x_{2n_{2}}\}$$

$$A_{m} = \{x_{m1}, x_{m2}, ..., x_{mn_{m}}\}$$

Xét tập B như sau

$$B = \{z_1, z_2, \dots, z_{n_1}, z_{n_1+1}, z_{n_1+2}, \dots, z_{n_1+n_2}, \dots, z_{n_1+n_2+\dots+n_m}, \dots\}$$

Khi đó giữa hợp của các A_i

 $A_1 \cup A_2 \cup \dots \cup A_m \cup \dots$

và B có một tương ứng một đối một.

Vậy hợp của các A_i cùng lực lượng với B_i

Nhưng B cùng lực lượng với N.

Vậy hợp của một số đếm được các tập hữu hạn là một tập đếm được

1.26. Giả sử φ là một ánh xạ nào đó từ E tới $\mathcal{P}(E)$. Khi đó $x \in E$ thì $\varphi(x)$ là tập ảnh của x nên $\varphi(x) \in \mathcal{P}(E)$;

x có thể thuộc $\varphi(x)$, có thể không. Ta xết

$$A = \{x \in E, x \notin \varphi(x)\}.$$

Như vậy $A \in \mathcal{P}(E)$. Hỏi có tồn tại $a \in E$ để $A = \varphi(a)$ không ? Giả sử có một phần từ a như thể. Khi đó

Nếu $a \in \varphi(a)$ thì $a \notin A = \varphi(a) \Rightarrow$ mâu thuẫn.

Neu $a \notin \varphi(a)$ thì $a \in A = \varphi(a) \Rightarrow$ mâu thuẫn. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 Vậy không có phần tử a nào của E để $A = \varphi(a)$. Do đó ánh xạ φ không phải toàn ánh, nên không phải song ánh. Vì φ là bất kì nên ta suy ra : không thể tồn tại một song ánh giữa E và $\mathcal{P}(E)$. Vậy E và $\mathcal{P}(E)$ không cùng lực lượng.

1.27. Mỗi bảng thành lập từ một bộ $(\alpha\beta\gamma\delta)$. Mỗi bộ $(\alpha\beta\gamma\delta)$ là một chỉnh hợp lặp chập 4 của các phần tử của $A = \{a, b\}$ góm 2 phần tử. Vậy số bảng thành lập được bằng số chỉnh hợp lặp chập 4 của 2 phần tử, nghĩa là bằng $2^4 = 16$.

Đó cũng là số ánh xạ từ A^2 tới A.

1.28. a) Mỗi số có 5 chữ số có thể tách thành 2 phần : phần đầu là 1 chữ số khác không lấy từ $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ phần sau gồm 4 chữ số bất kỉ, có thể trùng nhau, lấy từ 10 chữ số $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Vậy số các số có 5 chữ số bằng 9 lần số các chỉnh hợp lặp chập 4 của 10 phần tử. Số đó là

$9.10^4 = 90000$

b) Mỗi số có 5 chữ số khác nhau có hai phần : phần đầu là một chữ số khác không lấy từ $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, phần sau là 4 chữ số bất kỉ khác nhau lấy từ 9 chữ số còn lại của $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Vậy số các số có 5 chữ số khác nhau bằng 9 lần số chỉnh hợp không lập chập 4 của 9 phần tử. Số đó là

9.9.8.7 = 27216.

1.29. Goi E là tập có n phần tử. Những tập con của E là :

- Những tập con chứa 0 phần tử, đó là tập rỗng ; có $C_n^o = 1$ tập.

- Những tập con chứa 1 phần tử, có tổng số C_n^1 tập.

.

- Những tập con chứa 2 phân tử, có C_n^2 tập

· · · · · · · · · · · ·

- Những tập con chứa p phần tử (p < n), có C_{n}^{p} tập.

- Những tập con chứa n phần tử, đó là E, có $C_n^n = 1$ tập.

Vậy tổng số các tập con của E là

 $C_n^o + C_n^1 + C_n^2 + \dots + C_n^o + \dots + C_n^n = (1+1)^n = 2^n.$

www.VNMATH.com

1.30. Ta đã biết (xem định nghĩa 1.7.1, Thec/1) một hoán vị của tập $A = \{a_1 \ a_2 \ \dots \ a_n\}$ là ảnh của một song ánh từ A lên A. Một kí hiệu song ánh đó bằng chữ P thì ảnh đó là

$$\{ P(a_1) | P(a_2) ... | P(a_n) \}$$

Nó là một hoán vị của A; người ta cũng gọi hoán vị này là hoán vị P. Để cho dễ thấy người ta còn viết hoán vị đó như sau:

$$\mathbf{P} = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ P(a_1) & P(a_2) & \dots & P(a_n) \end{pmatrix}$$

trong đó hàng trên là các phần tử a_i của A, hàng dưới là các ảnh $P(a_i)$ tương ứng.

Như vậy, hoán vị $\{3 \ 4 \ 1 \ 2\}$ của tập $\{1 \ 2 \ 3 \ 4\}$ có thể viết

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

Xét thêm hoán vị Q của A :

$$Q = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ Q(a_1) & Q(a_2) & \dots & Q(a_n) \end{pmatrix}$$

Khi đó tích P_0Q là tích của hai ánh xạ P và Q, nó tạo ra hoán vị tích

$$P_{O}Q = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ (P_{O}Q)(a_1) & (P_{O}Q)(a_2) & \dots & (P_{O}Q)(a_n) \end{pmatrix}$$

xác định bởi 🚬

$$(\boldsymbol{P}_{0}\boldsymbol{Q})(\boldsymbol{a}_{j}) = \boldsymbol{P}[\boldsymbol{Q}(\boldsymbol{a}_{j})].$$

Với P và Q cho ở đầu bài :

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$
$$Q = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

ta có

\$

$$P_{0}Q = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$$

vì

vì

$$(P \circ Q)(1) = P[Q(1)] = P(2) = 4$$

$$(P \circ Q)(2) = P[Q(2)] = P(4) = 2$$

$$(P \circ Q)(3) = P[Q(3)] = P(1) = 3$$

$$(P \circ Q)(4) = P[Q(4)] = P(3) = 1$$

Một cách tương tự ta có

$$Q_{\alpha}P = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$$
$$(Q_{\alpha}P)(1) = Q[P(1)] = Q(3) = 1$$
$$(Q_{\alpha}P)(2) = Q[P(2)] = Q(4) = 3$$
$$(Q_{\alpha}P)(3) = Q[P(3)] = Q(1) = 2$$
$$(Q_{\alpha}P)(4) = Q[P(4)] = Q(2) = 4$$

Bây giờ xét P^{-1} và Q^{-1} . Ta có

$$P^{-1} = \begin{cases} 1 & 2 & 3 & 4 \\ P^{-1}(1) & P^{-1}(2) & P^{-1}(3) & P^{-1}(4) \end{cases}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$
$$Q^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ Q^{-1}(1) & Q^{-1}(2) & Q^{-1}(3) & Q^{-1}(4) \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$$

1.31. a) Cứ hai điểm cho một đoạn thẳng. Vậy d bằng số các tổ hợp của n điểm chập 2, do đó

$$d = \frac{n(n-1)}{2}.$$

b) Cứ ba điểm cho một tam giác. Vậy t bằng số các tổ hợp của n điểm chập 3. Do đó

$$t = \frac{n(n-1)(n-2)}{3!}$$

c) Với n = 3 ta có d = 3, t = 1 n = 4 ta có d = 6, t = 4n = 5 ta có d = 10, t = 10

1.32. a) Trước hết ta kiểm tra lại công thức

$$C_{n-1}^{p} + C_{n-1}^{p-1} = C_{n}^{p}$$

Thật vậy, ta có

0

$$\frac{(n-1)\dots(n-1-p+1)}{p!} + \frac{(n-1)\dots(n-1-(p-1)+1)}{(p-1)!} = \\ = \frac{(n-1)\dots(n-p)}{p!} + \frac{(n-1)\dots(n-p+1)}{p!}p = \\ = \frac{(n-1)\dots(n-p+1)}{p!}((n-p)+p) = \\ = \frac{n(n-1)\dots(n-p+1)}{p!} = O_n^p$$

Sau đó, thay trong

$$S = 1 - C_n^1 + C_n^2 + \dots + (-1)^p C_n^p$$

 C_{μ}^{q} bởi công thức trên ta được

$$S = 1 - (C_{n-1}^{o} + C_{n-1}^{1}) + (C_{n-1}^{1} + C_{n-1}^{2}) + \dots + (-1)^{p}(C_{n-1}^{p-1} + C_{n-1}^{p}) = (-1)^{p}C_{n-1}^{p}$$

b)
$$\sum_{i=0}^{n} C_{n}^{i} = (1 + 1)^{n} = 2^{n}$$

c) $\sum_{i=0}^{n} (-1)^{i} C_{n}^{i} = (1 - 1)^{n} = 0$

1.33. Đặt số hạng thứ p + 1 trong khai triển $(37 + 19)^{31}$

 $u_p = C_{31}^p 37^{31-p} 19^p$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 3-BT.TCC.T1 33

8-00°+

Ta có

$$\frac{u_p}{u_{p-1}} = \frac{31!}{p!(31-p)!} \cdot \frac{(p-1)!(32-p)!}{31!} \cdot \frac{19}{37} = \frac{19}{37} \cdot \frac{32-p}{p}$$
$$\frac{u_p}{u_{p+1}} = \frac{31!}{p!(31-p)!} \cdot \frac{(p+1)!(30-p)!}{31!} \cdot \frac{37}{19}$$
$$\frac{u_p}{u_{p+1}} = \frac{37}{19} \cdot \frac{p+1}{31-p}$$

Ta suy ra

$$\frac{u_p}{u_{p-1}} > 1 \Leftrightarrow 608 > 56p \Leftrightarrow p < 10, p \text{ nguyên };$$
$$\frac{u_p}{u_{p+1}} > 1 \Leftrightarrow 50p > 570 \Leftrightarrow p > 10, p \text{ nguyên.}$$

Vậy có

 $u_0 < u_1 < \ldots < u_9 < u_{10} > u_{11} > \ldots > u_{31}$ Do đó u_{10} là số hạng lớn nhất :

 $u_{10} \ = \ C_{31}^{10} 37^{21} 19^{10}$

Chương H

CẤU TRÚC ĐẠI SỐ - SỐ PHỨC -ĐA THỨC VÀ PHÂN THỨC HỮU TỈ

A. ĐỀ BÀI

2.1. LUẬT HỢP THÀNH TRONG TRÊN MỘT TẬP

2.2. CẤU TRÚC NHÓM

2.1. Cho $E = \{1, 2, 3\}, P_1, P_2, P_3, P_4, P_5, P_6$ là các hoán vị của E.

1) Chứng minh rằng với luật hợp thành là tích các hoán vị thì tập hợp các hoán vị nói trên tạo thành một nhóm, kí hiệu là S_3 .

2) Hỏi nhóm đó có giao hoán không??

2.2. Gọi $\mathbf{R}^* := \mathbf{R} - \{0\}$. Xết các ánh x
ạ $f_i : \mathbf{R}^* \to \mathbf{R}^*$ như sau

$$f_1(x) = x, \qquad \dots \qquad f_2(x) = 1/x$$

 $f_3(x) = -x, \qquad \qquad f_4(x) = -1/x$

Với luật hợp thành * xác định bởi

$$f_{\mathbf{i}} * f_{\mathbf{j}} := f_{\mathbf{i}} \circ f_{\mathbf{j}}$$

hãy chứng minh rằng các ánh xạ trên tạo thành một nhóm. Nhóm đó có giao hoán không ?

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

2.3. Cũng câu hỏi như ở bài tập 2.2 với $\mathbf{R}^{**} = \mathbf{R} - \{0, 1\}$ và $f_i : \mathbf{R}^{**} \rightarrow \mathbf{R}^{**}$ như sau :

$$f_1(x) = x, \qquad f_2(x) = \frac{1}{1-x}, \qquad f_3(x) = \frac{x-1}{x},$$

$$f_4(x) = \frac{1}{x}, \qquad f_5(x) = 1-x, \qquad f_6(x) = \frac{x}{x-1}.$$

2.3. CẤU TRÚC VÀNH

2.4. Hỏi mỗi tập số sau đây với phép cộng số và phép nhân số có phải là một vành không ?

Tập các số nguyên ;

2) Tập các số nguyên chẵn ;

- 3) Các số hữu tỉ ;
- 4) Các số thực ;
- 5) Các số phức ;
- 6) Các số có dạng $a + b\sqrt{2}$, a và b nguyên ;
- 7) Các số có dạng $a + b\sqrt{3}$, a và b hửu tỉ ;
- 8) Các số phức có dạng a + bi, a và b nguyên ;
- 9) Các số phức có dạng a + bi, a và b hữu tỉ.

2.4. CẤU TRÚC TRƯỜNG

2.5. Hỏi mỗi tập số ở bài tập 2.4 trên có phải là một trường không ?

2.6. Chúng minh rằng phương trình $x^2 + x - 1 = 0$ không có nghiệm hữu tỉ.

2.7. Cho a, b, c, d là các số hữu tỉ, λ là một số vô tỉ, chúng minh rằng :

 $(a + \lambda b = c + \lambda d) \Leftrightarrow (a = c \text{ và } b = d)$

Úng dụng : Viết số √192 + 96√3 ở dạng

 $x + y\sqrt{3}$ với x, y hữu tỉ.

www.VNMATH.com

2.5. SỐ PHỨC

2.8. Chứng minh rằng

z = (1 + 2i)(2 - 3i)(2 + i)(3 - 2i)

là một số thực.

2.9. Tìm x và y thực thỏa mãn (1+2i)x + (3-5i)y = 1-3i

2.10. Cho a, $b \in \mathbf{R}$, hãy xác định x, $y \in \mathbf{R}$ sao cho

$$(x + ai)(b + yi) = 4 + 3i$$

Biện luận theo a và b.

2.11. Hāy thực hiện các phép tính sau

a) $\frac{1 + itg\alpha}{1 - itg\alpha}$; b) $\frac{a + bi}{a - bi}$; c) $\frac{(1 + 2i)^2 - (1 - i)^3}{(3 + 2i)^3 - (2 + i)^2}$ d) $\frac{(1 - i)^5 - 1}{(1 + i)^5 + 1}$; e) $\frac{(1 + i)^9}{(1 - i)^7}$

2.12. Hāy tính

a) $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2$; b) $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3$;

2.13. Hãy tính các căn bậc hai của các số phức :

a) 3 - 4i; b) -15 + 8i;

c) -3 - 4i; d) -8 + 6i.

2.14. Giải phương trình

a) $x^4 + 6x^3 + 9x^2 + 100 = 0$

b)
$$x^4 + 2x^2 - 24x + 72 = 0$$

2.15. Viết các số phức sau ở dạng lượng giác

a) 1; b) -1; c) i; d) -i; e) 1 + i; f) -1 + i; g) -1 - i; h) 1 - i;

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

0.00	
6° 1	
· · · ·	

o) $\sqrt{3} - i$; p) $2 + \sqrt{3} + i$. 2.16. Tìm dạng lượng giác của $z = \frac{1+i\sqrt{3}}{\sqrt{3}+i} \, .$ Tinh z^{100} . 2.17. Cho $a = \cos\theta + i\sin\theta$. Tính $\frac{1-a}{1+a}$ theo θ . 2.18. Xét hai số phức z_1 và z_2 . Tìm điều kiện về z_1 và z_2 để a) z_1/z_2 là thực ; b) z_1/z_2 là ảo thuần túy. 2.19. Hãy tìm biểu diễn hình học của các số phức z thỏa mãn a) |z| < 2; b) $|z - 1| \le 1$; c) |z - 1 - i| < 1. 2.20. Giải phương trình a) |z| - z = 1 + 2i; b) |z| + z = 2 + i. 2.21. Chứng minh hàng đẳng thức $|x + y|^2 + |x - y|^2 = 2(|x|^2 + |y|^2)$ và cho biết ý nghĩa hình học của nó. 2.22. Tinh b) $\left(\frac{1+i\sqrt{3}}{i!-i}\right)^{20}$; a) $(1 + i)^{25}$; c) $\left(1 - \frac{\sqrt{3} - i}{2}\right)^{24}$; d) $\frac{(-1 + i\sqrt{3})^{15}}{(1 - i)^{20}} + \frac{(-1 - i\sqrt{3})^{15}}{(1 + i)^{20}}$. 2.23. Tính $(1 + \cos \alpha + i \sin \alpha)^n$. 127.0.001 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

i) $1 + i\sqrt{3}$; j) $-1 + i\sqrt{3}$; k) $-1 - i\sqrt{3}$;

n) -3 ;

1) $1 - i\sqrt{3}$; m) 2i;

2.24. Chứng minh rằng nếu $z + \frac{1}{z} = 2\cos\theta$, $(z \in C)$, thì

$$z^m + \frac{1}{z^m} = 2\cos m\theta$$

2.25. Chúng minh

$$\left(\frac{1+i\mathrm{tg}\alpha}{1-i\mathrm{tg}\alpha}\right)^n = \frac{1+i\mathrm{tg}n\alpha}{1-i\mathrm{tg}n\alpha}$$

2.26. Tính các căn :

a) bậc 6 của $\frac{1-i}{\sqrt{3}+i}$; b) bậc 8 của $\frac{1+i}{\sqrt{3}-i}$; c) bậc 6 của $\frac{i-1}{1+i\sqrt{3}}$. 2.27. Hãy biểu diễn theo cosx và sinx : a) cos5x ; b) cos8x ; c) sin6x ; d) sin7x. 2.28. Hãy biểu diễn tg6x theo tgx 2.29. Chúng minh

$$(1+i)^n = 2^{n/2} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right)$$

2.30. Hãy biểu diễn $\cos^5\theta$ và $\sin^5\theta$ theo cos và sin của các góc bội của θ .

2.31. Viết nghiệm của phương trình

 $x^2 + x\sqrt{3} + 1 = 0$

ở dạng lượng giác

2.32. Giải phương trình

$$z^2 - (1 + i\sqrt{3})z - 1 + i\sqrt{3} = 0$$

2.33. Giải phương trình

$$x^6 - 7x^3 - 8 = 0$$

2.6. ĐA THỨC

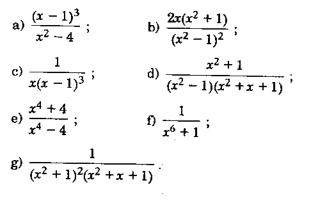
2.34. Hãy chia

a) $2x^4 - 3x^3 + 4x^2 - 5x + 6$ cho $x^2 - 3x + 1$; 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 39

b)
$$x^3 - 3x^2 - x - 1$$
 cho $3x^2 - 2x + 1$;
c) $x^4 + ix^3 - ix^2 + x + 1$ cho $x^2 - ix + 1$.
2.35. Tìm điều kiện để $x^3 + px + q$ chia hết cho $x^2 + mx - 1$.
2.36. Tìm điều kiện để $x^4 + px^2 + q$ chia hết cho $x^2 + mx + 1$.
2.37. Hãy phân tích thành tích các thừa số bậc nhất
a) $x^4 - 2x^2\cos\varphi + 1$; b) $x^3 - 6x^2 + 11x - 6$;
c) $x^4 + 4$; d) $x^4 - 10x^2 + 1$.

2.7. PHÂN THỨC HỮU TỈ

2.38. Hãy phân tích các phân thức sau thành tổng các phân thức đơn giản :



B. BÀI GIẢI VÀ HƯỚNG DẦN

2.1. Ta sẽ dùng cách kí hiệu của hoán vị và tích các hoán vị ở bài giải của bài tập 1.30.

Tập $E = \{1, 2, 3\}$ có ba phần từ nên có 3 ! = 6 hoán vị. Đó là

$$P_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad P_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$P_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad P_{4} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \\ P_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad P_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

1) Gọi \mathcal{P} là tập các hoán vị của E :

$$\mathcal{P} = \{P_1, P_2, P_3, P_4, P_5, P_6\}$$

với luật tích các hoán vị.

Ta có, chẳng hạn

$$P_{2} \circ P_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = P_{6}$$
$$P_{2} \circ P_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = P_{1}$$

v.v...

Ta thu được bảng nhân sau

	P_1	P ₂	P_3	P_4	P_5	.P ₆
P_1	<i>P</i> ₁	P ₂	P ₃	P_4	P ₅	P ₆
P_2	P ₂	P ₃	P ₁	P ₆	<i>P</i> ₄	P ₅
P_3	<i>P</i> ₃	P ₁	P ₂	P ₅	P ₆	P ₄
P_4	P ₄	P ₅	P_{6}	P_1	P ₂	<i>P</i> ₃
P_5	P ₅	·P ₆	<i>P</i> ₄	P ₃	P ₁	P ₂
P_6	P ₆	<i>P</i> ₄	P ₅	P ₂	P ₃	P ₁

1) Dựa vào bảng trên ta thấy $\mathcal{P} \neq \emptyset$ và

 $P_i o P_j \in \mathcal{P} \quad \forall i, j = 1, 2, ..., 6.$

Vậy luật nhân kí hiệu bởi $_{\rm O}$ là một luật hợp thành trong trên $\mathcal P$

Có thể kiểm tra lại để thấy rằng luật o có ba tính chất : 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

a) Tính kết hợp, chẳng hạn

 $P_{2} \circ (P_{4} \circ P_{3}) = P_{2} \circ P_{6} = P_{5}$ $(P_{2} \circ P_{4}) \circ P_{3} = P_{6} \circ P_{3} = P_{5}$

nghĩa là

 $P_2 \circ (P_4 \circ P_3) = (P_2 \circ P_4) \circ P_3$

b) Tồn tại phần tử trung hòa là P_1 :

 $P_i \circ P_1 = P_1 \circ P_1 = P_i, \quad \forall i$

c) Mọi P_i đều có phần tử đối, chẳng hạn

$$P_3 \circ P_2 = P_1, P_2 \circ P_3 = P_1$$

nên P_3 có phần tử đối là P_2 và P_2 có phần tử đối là P_3 .

Vậy tập ${\cal P}$ với luật $_{
m o}$ là một nhóm.

2) Nhưng nhóm này không giao hoán vì có

$$P_4 \circ P_3 = P_6 \neq P_3 \circ P_4 = P_5.$$

2.2. Ta làm tương tự bài tập trên, chẳng hạn :

 $(f_1 * f_2)(x) := (f_1 \circ f_2)(x) = f_1[f_2(x)] = f_1\left(\frac{1}{x}\right) = \frac{1}{x} = f_2(x)$ tức là $f_1 * f_2 = f_2;$

 $(f_2 * f_3)(x) = f_2[f_3(x)] = f_2(-x) = \frac{1}{-x} = f_4(x)$

tức là

$$f_2 * f_3 = f_4;$$

v.v. Ta thu được bảng

	f_1	f_2	f_3	f_4
f_1	f _I	<i>f</i> ₂	f_3	f_4
<i>f</i> ₂	f_2	f_1	f_4	f_3
f_3	f_3	<i>f</i> ₄	f_1	f_2
f_4	f_4	<i>f</i> ₃	f_2	f_1

Gọi \mathcal{F} là tập các ánh xạ

 $\mathcal{F} = \{f_1, f_2, f_3, f_4\}.$

www.VNMATH.com

Giống như trên ta nhận thấy $\mathcal{F} \neq \emptyset$ và luật * là luật hợp thành trong trên \mathcal{F} , đồng thời nó có ba tính chất :

a) tính kết hợp ;

b) tồn tại phần tử trung hòa là f_1 ;

c) mọi f_i đều có phần tử đối.

Do đó tập \mathcal{F} với luật * là một nhóm.

Đây là một nhóm giao hoán vì có

$$f_{i} * f_{i} = f_{i} * f_{i}, \forall i, j$$

2.3. Cách làm giống như ở hai bài tập trên.Bảng nhân thu được như sau :

	f_1	f_2	f_3	f_4	<i>f</i> ₅	f_6
f_1	f_1	f_2	<i>f</i> ₃	f_4	f_5	<i>f</i> ₆
f_2	f_2	f_3	f_1	. f ₆	f_4	<i>f</i> ₅
f_3	<i>f</i> ₃	f_1	f_2	f_5	f ₆	<i>f</i> ₄
f_4	f_4	f_5	f_6	f_1	f_2	f_3
f_5	f_5	<i>f</i> ₆	<i>f</i> ₄	f_3	f_1	f_2
f_6	f_6	f_4	f_5	f_2	f_3	f_1

Đáp số : Tập $\{f_1, f_2, f_3, f_4, f_5, f_6\}$ với luật nhân * là một nhóm không giao hoán.

2.4. 1) Xét tập Z các số nguyên với phép cộng (+) số nguyên và phép nhân (.) số nguyên thông thường. Trước hết $Z \neq \emptyset$ và luật cộng cùng với luật nhân là hai luật hợp thành trong của Z. Thật vậy,

 $\forall a, b \in \mathbb{Z}, a + b$ hoàn toàn xác định và $a + b \in \mathbb{Z}$.

 $\forall a, b \in \mathbb{Z}, a.b$ hoàn toàn xác định và $a.b \in \mathbb{Z}$.

Bây giờ ta phải kiểm tra lại các tiên đề từ A1 đến A4 về vành (xem 2.3.1 trong Thcc/1).

a) Về tiên đề A1. Ta phải xem (Z, +) có phải là một nhóm giao hoán không. Ta duyệt lại các tiên đề về nhóm (xem 2.2.1 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

trong Thec/1). Ta thấy $\mathbf{Z} \neq \emptyset$ và phép cộng (+) là một luật hợp thành trong của \mathbf{Z} với các tính chất sau :

α) Phép cộng có tính kết hợp vì

 $a + (b + c) = (a + b) + c \quad \forall a, b, c \in \mathbb{Z}.$

 β) Phép cộng có phần tử trung hòa là 0

a + 0 = a, 0 + a = a, $\forall a \in \mathbb{Z}$.

γ) Mọi $a \in \mathbf{Z}$ đều có phần tử đối là - $a \in \mathbf{Z}$.

a + (-a) = 0 (-a) + a = 0.

Vậy (\mathbf{Z} , +) thỏa mãn ba tiên để G1, G2, G3 của nhóm, nên (\mathbf{Z} , +) là một nhóm.

Ngoài ra

 $a + b = b + a \quad \forall a, b \in \mathbf{Z}$

Cho nên (\mathbf{Z} , +) là một nhóm giao hoán. Do đó tiên để Al thỏa mãn.

b) Về tiên đề A2. Ta có

 $a_{\cdot}(b,c) = (a,b).c, \forall a, b, c \in \mathbb{Z}$

nghĩa là phép nhân có tính kết hợp. Do đó tiên đề A2 thỏa mān.

c) Về tiên đề A3. Ta có, $\forall a, b, c \in \mathbf{Z}$

$$a.(b + c) = a.b + a.c$$
$$(b + c).a = b.a + c.a$$

Do đó tiên để A3 thỏa mãn.

Vậy, (Z, +, .) là một vành.

Hơn nữa

$$a.b = b.a$$

Cho nên vành (\mathbf{Z} , +, .) là một vành giao hoán.

Ngoài ra ta còn có

$$a.1 = a, 1.a = a$$

nghĩa là phép nhân có phần tử trung hòa là 1. Vậy vành (Z, +, .) là một vành giao hoán có đơn vị (là 1). 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 Một cách tương tự, với các câu hỏi sau ta chứng minh được :

2) Tập các số nguyên chẳn với phép cộng số nguyên và phép nhân số nguyên thông thường là một vành giao hoán, phần tử trung hòa của phép cộng là số không.

Phần tử đối của a là -a. Vành này có đơn vị là 1.

200 8,0 8,0

3) Tập các số hữu tỉ \mathbf{Q} với phép cộng số hữu tỉ và phép nhân số hữu tỉ thông thường là một vành giao hoán, phần tử trung hòa của phép cộng là số không. Phần tử đối của $a \in \mathbf{Q}$ là $-a \in \mathbf{Q}$. Vành này có đơn vị là 1.

4) Tập các số thực \mathbf{R} với phép cộng số thực và phép nhân số thực thông thường là một vành giao hoán, phần tử trung hòa của phép cộng là số không. Phần tử đối của $a \in \mathbf{R}$ là $-a \in \mathbf{R}$. Vành này có đơn vị là 1.

5) Tập các số phức C có dạng (a, b) ở 2.5.2 Thec/1 với phép cộng số phức và phép nhân số phức định nghĩa ở 2.5.2 là một vành giao hoán, phần tử trung hòa của phép cộng là (0, 0). Phần tử đối của $(a, b) \in C$ là $(-a, -b) \in C$. Vành này có đơn vị là (1, 0).

6) Tập các số có dạng $a + b\sqrt{2}$, $a, b \in \mathbb{Z}$. Với phép cộng số và nhân số thông thường là một vành giao hoán, phần tử trung hòa của phép cộng là $0 + 0\sqrt{2} = 0$. Phần tử đối của $a + b\sqrt{2}$, $a, b \in \mathbb{Z}$ là $-a - b\sqrt{2}$. Vành này có đơn vị là $1 + 0\sqrt{2} = 1$:

7) Tập các số có dạng $a + b\sqrt{3}$, $a, b \in \mathbf{Q}$ với phép cộng số • và nhân số thông thường là một vành giao hoán. Phần tử trung hòa của phép cộng là $0 + 0\sqrt{3} = 0$. Phần tử đối của $a + b\sqrt{3}$, $a, b \in \mathbf{Q}$ là $-a - b\sqrt{3}$. Vành này có đơn vị là $1 + 0\sqrt{3} = 1$.

8) Tập các số phức có dạng a + bi, $a, b \in \mathbb{Z}$ với phép cộng và nhân số phức thông thường là một vành giao hoán, phần tử trung hòa của phép cộng là 0 + 0i = 0, phần tử đối của a + bi, $a, b \in \mathbb{Z}$ là -a - bi. Vành này có đơn vị là 1 + 0i = 1.

9) Tập các số phức có dạng a + bi, $a, b \in \mathbf{Q}$ với phép cộng và nhân số phức thông thường là một vành giao hoán, phần tử trung hòa của phép cộng là 0 + 0i = 0, phần tử đối của a + bi, $a, b \in \mathbf{Q}$ là -a - bi. Vành này có đơn vị là 1 + 0i = 1.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

2.5. Muốn chứng minh các tập số đã cho ở đầu bài có phải là một trường hay không, ta phải kiểm tra lại hai tiên đế K1 và K2 của trường. Các tập số đã cho ở bài tập 2.4, như ta đã thấy, đều là những vành giao hoán có đơn vị, nghĩa là đối với mỗi tập số đó tiên đế K1 được thỏa mãn rồi.

Bây giờ xét tiên đề K2 đối với tập số nguyên Z ở câu 1). Dơn vị của tập đó là 1. Phần tử trung hòa của phép cộng là 0. Muốn chứng minh tiên đề K2 thỏa mãn ta phải chứng minh rằng mọi số a nguyên $\neq 0$ ($a \in \mathbb{Z}$, $a \neq 0$) đều có nghịch đảo nguyên (tức là $\in \mathbb{Z}$). Nhưng $\frac{1}{a}$ không nguyên khi $a \neq 1$. Vậy tập số nguyên ở câu 1) không phải là một trường.

Một cách tương tự, ta sẽ thấy

2) Tập số nguyên chẳn ở câu 2) không phải là một trường vì với a = 2 là một số nguyên chẳn ta thấy $\frac{1}{a} = \frac{1}{2}$ không phải là một số nguyên chẵn.

3) Tập các số hữu tỉ \mathbf{Q} là một trường vì với mọi số $a \in \mathbf{Q}$, $a \neq 0$ ta đều có $\frac{1}{a} \in \mathbf{Q}$.

4) Tập các số thực **R** là một trường vì với mọi số $a \in \mathbf{R}$, $a \neq 0$ ta đều có $\frac{1}{a} \in \mathbf{R}$.

5) Tập các số phức C với phép cộng và phép nhân định nghĩa ở 2.5.2 Thec/1 là một trường vì khi đó : ta đã biết phần tử trung hòa của phép cộng là (0, 0), phần tử trung hòa của phép nhân là (1, 0), (đó là đơn vị của vành) cho nên với mọi số phức $(a, b) \in \mathbf{C}$, $(a, b) \neq (0, 0)$ ta có $a^2 + b^2 \neq 0$ và nghịch đảo của (a, b) là

$$\left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right) \in \mathbf{C}$$

6) Tập các số có dạng $a + b\sqrt{2}$, $a, b \in \mathbb{Z}$ không phải là một, trường vì với $a + b\sqrt{2} \neq 0$. Tuy có

www.VNMATH.com

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} + \frac{-b}{a^2-2b^2}\sqrt{2};$$

nhưng

 $\frac{a}{a^2-2h^2}$ và $\frac{-b}{a^2-2h^2}$ chưa chắc đã thuộc Z.

Chẳng han khi a = 1, b = 2 thì

$$\frac{a}{a^2 - 2b^2} = \frac{1}{1 - 8} = \frac{1}{-7} \notin \mathbf{Z}$$

7) Tập các số có dạng $a + b\sqrt{3}$, $a, b \in \mathbf{Q}$ là một trường vì với mọi $a + b\sqrt{3} \neq 0, a, b \in \mathbf{Q}$ ta có

$$\frac{1}{a+b\sqrt{3}} = \frac{a-b\sqrt{3}}{a^2-3b^2} = \frac{a}{a^2-3b^2} + \frac{-b}{a^2-3b^2}\sqrt{3}$$
$$\frac{a}{a^2-3b^2} \in \mathbf{Q}, \qquad \frac{-b}{a^2-3b^2} \in \mathbf{Q}$$

nghĩa là $a + b\sqrt{3} \neq 0$ có nghịch đảo thuộc tập số đã cho.

8) Tâp các số phức có dạng a + bi, $a, b \in \mathbb{Z}$ không phải là một trường vì với $a + bi \neq 0 + 0i$, tuy rằng

$$\frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}, \quad a^2+b^2 \neq 0$$

nhưng $\frac{a}{a^2 + b^2}$ và $-\frac{b}{a^2 + b^2}$ chưa chắc đã thuộc Z.

9) Tập các số phức có dạng a + bi, $a, b \in \mathbf{Q}$ là một trường vì với mọi số phác $a + bi \neq 0 + 0i$ ta có $a^2 + b^2 \neq 0$ và

$$\frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}, \frac{a}{a^2+b^2} \in \mathbf{Q}, \frac{-b}{a^2+b^2} \in \mathbf{Q}.$$

2.6. Giải phương trình

$$x^2 + x - 1 = 0$$

trong trường số thực ta được

$$x = \frac{1}{2}(-1 \pm \sqrt{5})$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Nếu $x \in \mathbf{Q}$ thì $\sqrt{5} \in \mathbf{Q}$, điều này vô lí. Thực vậy, nếu như $\sqrt{5} \in \mathbf{Q}$ thì có

$$\sqrt{5} = \frac{p}{q}, p \in \mathbf{N}, q \in \mathbf{N}, q \neq \mathbf{0}.$$

Bằng cách giản ước nếu cần, ta có thể xem p và q là nguyên tố cùng nhau. Ta có

$$\sqrt{5} = \frac{p}{q} \Rightarrow p^2 = 5q^2$$

tức là p^2 chia hết cho 5, ta suy ra p chia hết cho 5, ta đặt $p = 5p', p' \in \mathbb{N}$. Từ đó.

$$(5p')^2 = 5q^2 \Rightarrow q^2 = 5p'^2$$

tức là q^2 chia hết cho 5, ta suy ra q chia hết cho 5, ta đặt $q = 5q', q' \in \mathbf{N}$.

Vậy từ giả thiết $\sqrt{5} \in \mathbf{Q}, \sqrt{5} = \frac{p}{q}$ trong đó p và q nguyên tố cùng nhau ta suy ra p và q cùng chia hết cho 5. Mâu thuẫn đó chứng tỏ $\sqrt{5}$ không phải là một số hữu tỉ. Do đó phương trình đã cho không có nghiệm hữu tỉ.

2.7. Ta có

$$a + \lambda b = c + \lambda d \Leftrightarrow (a - c) = \lambda (d - b)$$

Nếu $d - b \neq 0$ thì

$$1 = \frac{a-c}{d-b}$$

là một số hữu tỉ : vô lí. Vậy phải có

d - b = 0 tức là b = d.

Ta suy ra

a - c = 0 tức là a = c.

Ngược lại, nếu a = c, b = d thì rõ ràng

$$a + \lambda b = c + \lambda d$$
.

Áp dung. Đặt

$$\sqrt{192 + 96\sqrt{3}} = x + y\sqrt{3},$$

với x và y hữu tỉ.

Bình phương 2 về khi về phải $x + y\sqrt{3} > 0$

$$192 + 96\sqrt{3} = x^2 + 3y^2 + 2xy\sqrt{3}.$$

Vì $\sqrt{3}$ là một số vô tỉ nên áp dụng kết quả trên ta suy ra

$$\begin{array}{rcrr} x^2 + 3y^2 &=& 192\\ 2xy &=& 96. \end{array}$$

Hệ này có hai nghiệm

x = 12, y = 4 và x = -12, y = -4.

Nghiệm thứ hai cho

$$x + y\sqrt{3} = -12 - 4\sqrt{3} < 0$$

không thích hợp. Chỉ có nghiệm thứ nhất là thích hợp vì lúc đó

Kết quả :
$$x + y\sqrt{3} = 12 + 4\sqrt{3} > 0$$

 $\sqrt{192 + 96\sqrt{3}} = 12 + 4\sqrt{3}.$

2.8. Thực hiện các phép nhân với chú ý rằng $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ ta được z = 65

2.9. Phương trình cho ở đầu bài viết thành

$$x + 3y + i(2x - 5y) = 1 - 3i.$$

Hai số phức bằng nhau khi phần thực của chúng bằng nhau và phần ảo của chúng bằng nhau. Ta suy ra

$$\begin{cases} x + 3y = 1 \\ 2x - 5y = -3. \end{cases}$$

Giải hệ này ta được

$$x = -\frac{4}{11}, y = \frac{5}{11}.$$

2.10. Phương trình cho ở đầu bài viết thành

bx - ay + i(ab + xy) = 4 + 3i.

Do đó x và y là nghiệm của hệ

$$bx - ay = 4$$

 $ab + xy = 3.$ (2.1)

Trường hợp a = 0, b = 0: vô nghiệm. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 48T.TCC.T1

Trường hợp a = 0, $b \neq 0$: $x = \frac{4}{b}$, $y = \frac{3b}{4}$ Trường hợp $a \neq 0$, b = 0 : $x = -\frac{3a}{4}$, $y = -\frac{4}{a}$ Trường hợp $ab \neq 0$, khủ y thì hệ (2.1) còn $bx^2 - 4x + a^2b - 3a = 0$.

Ta có :

$$\Delta' = -a^2b^2 + 3ab + 4$$

 $\Delta' = 0 \text{ khi } ab = -1 \text{ hay } 4$ $\Delta' > 0 \text{ khi } -1 < ab < 4, ab \neq 0$ $\Delta' < 0 \text{ khi } ab < -1 \text{ hay } ab > 4$

Vậy khi ab < -1 hay ab > 4 thì vô nghiệm. Khi ab = -1 hay ab = 4 thì có một nghiệm

$$x=\frac{2}{b}, \quad y=-\frac{2}{a}$$

Khi -1 < ab < 4 thì có hai nghiệm

$$x = \frac{2 \pm \sqrt{\Delta}}{b},$$
$$y = \frac{bx - 4}{a}.$$

2.11. a) $\frac{1 + itga}{1 - itga} = \frac{\cos a + i\sin a}{\cos a - i\sin a}$

$$= \frac{\cos\alpha + i\sin\alpha}{\cos\alpha + i\sin(-\alpha)} = \cos(\alpha - (-\alpha)) + i\sin(\alpha - (-\alpha))$$
$$= \cos 2\alpha + i\sin 2\alpha.$$
b)
$$\frac{a + bi}{a - bi} = \frac{(a + bi)(a + bi)}{(a - bi)(a + bi)}$$
$$= \frac{a^2 - b^2 + 2abi}{a^2 + b^2}.$$

c)
$$\frac{(1+2i)^2 - (1-i)^3}{(3+2i)^3 - (2+i)^2} =$$
$$= \frac{(1-4+4i) - (1-3i+3i^2-i^3)}{(27+54i+36i^2+8i^3) - (4-1+4i)}$$
$$= \frac{-3+4i - (1-3i-3+i)}{27+54i - 36-8i - (3+4i)}$$
$$= \frac{-1+6i}{-12+42i} = \frac{(-1+6i)(-12-42i)}{(-12+42i)(-12-42i)}$$
$$= \frac{264-30i}{1908} = \frac{44-5i}{318}$$

d) Xét

$$S = \frac{(1-i)^5 - 1}{(1+i)^5 + 1}$$

Та со

$$(1 + i)^5 = -4 - 4i$$

 $(1 - i)^5 = -4 + 4i$

Do đó

$$\frac{(1-i)^5-1}{(1+i)^5+1} = \frac{-5+4i}{-3-4i} = \frac{5-4i}{3+4i}$$
$$= \frac{(5-4i)(3-4i)}{(3+4i)(3-4i)} = \frac{-1-32i}{25}$$

e)
$$\frac{(1+i)^9}{(1-i)^7} = \left(\frac{1+i}{1-i}\right)^7 (1+i)^2$$

۰,

Ta có

$$\frac{1+i}{1-i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} = \frac{2i}{2} = i$$
$$(1+i)^2 = 2i.$$

· · ·

Vậy

$$\frac{(1+i)^9}{(1-i)^7} = i^7 \cdot 2i = 2i^8 = 2.$$

2.12. a)
$$\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} - \frac{3}{4} - 2i\frac{\sqrt{3}}{4} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$

b) $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3 = \left(-\frac{1}{2}\right)^3 + 3\left(\frac{1}{2}\right)^2 i\frac{\sqrt{3}}{2}$
 $+ 3\left(-\frac{1}{2}\right)\left(i\frac{\sqrt{3}}{2}\right)^2 + \left(i\frac{\sqrt{3}}{2}\right)^3$
 $= -\frac{1}{8} + i\frac{3\sqrt{3}}{8} + \frac{9}{8} - i\frac{3\sqrt{3}}{8} = 1.$

Chú thích. Có thể chú ý rằng

$$-\frac{1}{2}+i\frac{\sqrt{3}}{2}=\sqrt[3]{1}.$$

2.13. a) Đặt

 $\sqrt{3-4i} = x + yi, x, y \in \mathbf{R}.$

Binh phương hai vế ta được

$$3 - 4i = x^2 - y^2 + 2xyi$$

Do đó

$$\begin{cases} x^2 - y^2 = 3\\ 2xy = -4 \end{cases}$$

Với điều kiện x ≠ 0 ta có

$$y = -\frac{2}{x},$$
$$x^{2} - \frac{4}{x^{2}} = 3$$
$$x^{4} - 3x^{2} - 4 = 0$$

 $\text{Dặt } X = x^2 \ge 0$

 $X^2 - 3X - 4 = 0$

Phương trình này có hai nghiệm

 $X = -1 < 0 \Rightarrow \text{loai}$

$$X = 4 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2 \neq 0$$

www.VNMATH.com

Khi
$$x = 2, y = -\frac{2}{2} = -1$$

 $x = -2, y = \frac{-2}{-2} = +1$
Vây
 $\sqrt{3 - 4i} = \pm (2 - i)$
b) Dật
 $\sqrt{-15 + 8i} = x + yi; x, y \in \mathbb{R}$
Bình phương hai vế ta được
 $-15 + 8i = x^2 - y^2 + 2xyi$
Do đó
 $\begin{cases} x^2 - y^2 = -15 \\ 2xy = 8 \end{cases}$

Với điều kiện x ≠ 0 ta có

$$y = \frac{4}{x}$$
$$x^{2} - \frac{16}{x^{2}} = -15$$
$$x^{4} + 15x^{2} - 16 = 0$$

 $\text{Dat } X = x^2 \ge 0$

$$X^2 + 15X - 16 = 0$$

Phương trình này cơ hai nghiệm

$$X = -16 < 0 \Rightarrow \text{loai}$$
$$X = 1 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \neq 0$$
$$x = \pm 1 \Rightarrow y = \frac{4}{\pm 1} = \pm 4.$$

Vậy

6

$$\sqrt{-15 + 8i} = \pm (1 + 4i).$$

Bây giờ, bằng cách làm tương tự trên ta thu được

c)
$$\sqrt{-3 - 4i} = \pm (1 - 2i)$$

d) $\sqrt{-8 + 6i} = \pm (1 + 3i)$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

2.14. a) Phương trình $x^4 + 6x^3 + 9x^2 + 100 = 0$ viết thành $(r^2 + 3r)^2 - (10i)^2 = 0$ hay $(x^2 + 3x - 10i)(x^2 + 3x + 10i) = 0.$ Ta suy ra hai phương trình : phương trình thứ nhất $x^2 + 3x - 10i = 0$ (2.2)có biệt số $\Delta = 9 + 40i$. Áp dụng phương pháp ở bài 2.13, ta thu được $\sqrt{\Delta} = \pm (5 + 4i)$ Do đó phương trình (2.2) có 2 nghiệm $x = \frac{-3 \pm (5+4i)}{2} = \begin{cases} 1 + 2i \\ -4 - 2i \end{cases}$ Phương trình thứ hai $x^2 + 3x + 10i = 0$ (2.3)có biệt số $\Delta = 9 - 40i$. Áp dụng phương pháp ở bài 2.13, ta thu được $\sqrt{\Delta} = \pm (5 - 4i)$ Do đó phương trình (2.3) có hai nghiệm $x = \frac{-3 \pm (5 - 4i)}{2} = \begin{cases} 1 - 2i \\ -4 + 2i \end{cases}$ Vậy phương trình đã cho có 4 nghiệm phức liên hợp từng cặp : $1 \pm 2i$ và $-4 \pm 2i$. b) Phương trình $x^4 + 2x^2 - 24x + 72 = 0$ viết thành $x^4 + 2(x - 6)^2 = 0$ hay $x^4 - (\sqrt{2}i)^2 (x - 6)^2 = 0$

 $[x^{2} + \sqrt{2}i(x - 6)][x^{2} - \sqrt{2}i(x - 6)]$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012
54

(2.4)

 $x^2 - \sqrt{2}i(x - 6) = 0$ (2.5)Phương trình (2.4) có biệt số $\Lambda = -2 + 24\sqrt{2}i$ Áp dụng phương pháp ở bài 2.13 ta thu được $\sqrt{\Delta} = \pm (4 + 3\sqrt{2}i)$ Do đó phương trình (2.4) có 2 nghiệm $x = \frac{-\sqrt{2}i \pm (4 + 3\sqrt{2}i)}{2} = \begin{cases} 2 + \sqrt{2}i \\ -2 - 2\sqrt{2}i \end{cases}$ Phương trình (2.5) cơ biệt số $\Lambda = -2 - 24\sqrt{2}i$ Áp dụng phương pháp ở bài 2.13, ta thu được $\sqrt{\Delta} = \pm (4 - 3\sqrt{2}i)$ Do đó phương trình (2.5) có hai nghiệm $x = \frac{\sqrt{2}i \pm (4 - 3\sqrt{2}i)}{2} = \begin{cases} 2 - \sqrt{2}i \\ -2 + 2\sqrt{2}i \end{cases}$ Vây phương trình đã cho có 4 nghiệm phức liên hợp từng cặp : $2 \pm \sqrt{2}i$ và $-2 \pm 2\sqrt{2}i$ 2.15. a) Số phức 1 có agumen, 1+i - 1+i bằng 0 và môđun bằng 1 (hình 2). Do đó $1 = \cos 0 + i \sin 0$ b) Số phức -1 có mô đun bằng 1 và agumen bằng π (hình 2). Do đổ $-1 = \cos \pi + i \sin \pi$. c) Số phức i có mô đun bằng 1 và agumen bằng $\frac{\pi}{2}$ (hình 2). Do đó -1 1-i -14 $i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$. Hinh 2 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

......

Do đó có hai phương trình

 $x^2 + \sqrt{2}i(x - 6) = 0$

8.00

d) Số phức -*i* có mô đun bằng 1 và agumen bằng $\frac{3\pi}{2}$ (hình 2). Do đó

$$i = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}.$$

e) Số phúc 1 + i có mô đun bằng $\sqrt{1^2 + 1^2} = \sqrt{2}$ và agumen bằng $\frac{\pi}{4}$ (hình 2). Do đó

$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

f) Số phúc -1 + i có mô đun bằng $\sqrt{(-1)^2 + 1^2} = \sqrt{2}$ và agumen bằng $\frac{3\pi}{4}$ (hình 2). Do đó

$$-1 + i = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$

g) Số phức -1 - i có mô đun bằng $\sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$ và agumen bằng $\frac{5\pi}{4}$ (hình 2). Do đó

$$-1 - i = \sqrt{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)$$

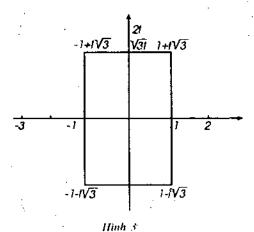
h) Số phức 1 – *i* có mô dun bằng $\sqrt{1^2 + (-1)^2} = \sqrt{2}$ và agumen bằng $\frac{7\pi}{4}$ (hình 2). Do đó

$$1 - i = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)$$

i) Số phức $1 + i\sqrt{3}$ có mô đun bằng $\sqrt{1^2 + (\sqrt{3})^2} = 2$ và agumen bằng $\frac{\pi}{3}$ (hình 3). Do đó

$$1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

j) Số phúc -1 + $i\sqrt{3}$ có mô đun bằng $\sqrt{(-1)^2 + (\sqrt{3})^2} = 2$ và agumen bằng $\frac{2\pi}{3}$ (hình 3) do đó 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 56



$$-1 + i\sqrt{3} = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right).$$

k) Số phức $-1 - i\sqrt{3}$ có mô đun bằng $\sqrt{(-1)^2 + (-\sqrt{3})^2} = 2$ và agumen bằng $\frac{4\pi}{3}$ (hình 3). Do đó

$$-1 - i\sqrt{3} = 2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right).$$

1) Số phức 1 - $i\sqrt{3}$ có mô đun bằng $\sqrt{1^2 + (-\sqrt{3})^2} = 2$ và agumen bằng $\frac{5\pi}{3}$ (hình 3). Do đó

$$1 - i\sqrt{3} = 2\left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$$
.

m) Số phức 2*i* có mô đun bằng 2 và agumen bằng $\frac{\pi}{2}$ (hình 3). Do đó

$$2i = 2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right).$$

n) Số phúc -3 có mô đun bằng 3 và agumen bằng π (hình 3). Do đó

 $-3 = 3(\cos\pi + i\sin\pi).$

8.818

o) Số phúc $\sqrt{3} - i$ có mô đun bằng $\sqrt{(\sqrt{3})^2 + (-1)^2} = 2$ và agumen bằng $\frac{11\pi}{6}$ (hình 3). Do đó

$$\sqrt{3} - i = 2\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right).$$

p) Số phúc $2 + \sqrt{3} + i$ có mô đun ρ bằng

$$\rho = \sqrt{(2 + \sqrt{3})^2 + 1^2} = \sqrt{8 + 4\sqrt{3}} = \sqrt{2} + \sqrt{6}$$

và agumen θ xác định bởi

$$tg\theta = \frac{1}{2+\sqrt{3}}, \ 0 \le \theta < 2\pi.$$

Ta suy ra

$$tg2\theta = \frac{2tg\theta}{1 - tg^2\theta} = \frac{1}{\sqrt{3}}$$

Do đó

$$2\theta = \frac{\pi}{6} + k\pi$$
$$\theta = \frac{\pi}{12} + k\frac{\pi}{2}$$

Ta chọn k = 0, $\theta = \frac{\pi}{12}$ để sin $\theta = \sin \frac{\pi}{12}$ cùng dấu với phần ảo của số phức 2 + $\sqrt{3}$ + *i*. Vậy

$$2 + \sqrt{3} + i = (\sqrt{2} + \sqrt{6}) \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$$

2.16. Nhân tử và mẫu với số phức liên hợp của mẫu, ta được

$$z = \frac{(1+i\sqrt{3})(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)} = \frac{1}{2}(\sqrt{3}+i)$$

Số phức $\frac{1}{2}(\sqrt{3}+i)$ có mô đun bằng $\sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = 1$ và agumen bằng $\frac{\pi}{6}$, do đó

$$x = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$$

The suy ra $z^{100} = \cos \frac{100\pi}{6} + i\sin \frac{100\pi}{6}$ $= \cos \frac{4\pi}{6} + i\sin \frac{4\pi}{6}$ $= \cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ 2.17. Nhân từ và mẫu với số phức liên hợp của mẫu $z = \frac{1-a}{1+a} = \frac{1-\cos\theta - i\sin\theta}{1+\cos\theta + i\sin\theta}$ $= \frac{(1-\cos\theta - i\sin\theta)(1+\cos\theta - i\sin\theta)}{(1+\cos\theta + i\sin\theta)(1+\cos\theta - i\sin\theta)}$ $= \frac{-2i\sin\theta}{(1+\cos\theta)^2 + \sin^2\theta} = \frac{-2i\sin\theta}{2(1+\cos\theta)}$ $= -itg\frac{\theta}{2}$

2.18. Viết z_1 và z_2 ở dạng lượng giác : $z_1 = \rho_1(\cos\theta_1 + i\sin\theta_1)$ $z_2 = \rho_2(\cos\theta_2 + i\sin\theta_2)$

thì

$$\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} (\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)).$$

Vậy :

a) Muốn
$$\frac{z_1}{z_2}$$
 là số thực thỉ điều kiện là

 $\sin(\theta_1 - \theta_2) = 0$

tức là $\theta_1 - \theta_2 = k\pi$, $k \in \mathbb{N}$, nghĩa là phải có ảnh của z_1 và z_2 thẳng hàng với gốc O. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

b) Muốn $\frac{z_1}{z_2}$ là số ảo thuẩn túy thi điều kiện là

$$\cos(\theta_1 - \theta_2) = 0,$$

tức là $\theta_1 - \theta_2 = (2k + 1)\frac{\pi}{2}, k \in \mathbb{N}$, nghĩa là phải có : ảnh của z_1 và z_2 tạo với gốc O một góc vuông.

2.19. a) Ảnh của các số phức z thỏa mãn |z| < 2 nằm ở trong hình tròn tâm tại gốc O và bản kính bằng 2.

b) Ánh của các số phức z thỏa mãn $|z - 1| \leq 1$ nằm ở trong và trên chu vi của hình tròn có tâm tại ảnh của z = 1và có bán kính bằng 1, tức là phần trong và trên đường tròn tâm (1, 0) bán kính 1.

c) Ảnh của các số phức z thỏa mãn |z - 1 - i| < 1 nằm ở trong hình tròn có tâm tại ảnh của z = 1 + i và có bản kính bằng 1, tức là phần trong của hình tròn tâm (1, 1) bán kính 1.

2.20. a) Ta tìm z ở dạng z = x + iy thì có

$$\sqrt{x^2 + y^2} - x - iy = 1 + 2i.$$

Ta suy ra

$$\begin{cases} \sqrt{x^2 + y^2} - x = 1\\ -y = 2 \end{cases}$$

Do đó có $y = 2, x = \frac{3}{2}$ và có $z = \frac{3}{2} - 2i$.
b) Ta tìm z ở dạng $z = x + iy$ thì có
 $\sqrt{x^2 + y^2} + x + iy = 2 + i$.
Ta suy ra

Ta suy ra

b) Ta

$$\begin{cases} \sqrt{x^2 + y^2} + x = 2\\ y = 1 \end{cases}$$

Do đó có

$$y=1, x=\frac{3}{4}$$

và

$$z=\frac{3}{4}+i.$$

2.21. Ta có

$$|x + y|^2 = (x + y)(\overline{x + y}) = (x + y)(\overline{x} + \overline{y})$$

 $= x\overline{x} + x\overline{y} + y\overline{x} + y\overline{y} = |x|^2 + x\overline{y} + y\overline{x} + |y|^2;$
 $|x - y|^2 = (x - y)(\overline{x - y}) = (x - y)(\overline{x} - \overline{y})$
 $= x\overline{x} - x\overline{y} - y\overline{x} + y\overline{y} = |x|^2 - x\overline{y} - y\overline{x} + |y|^2.$
Do dó
 $|x + y|^2 + |x - y|^2 = 2(|x|^2 + |y|^2)$

Ý nghĩa hình học : Tổng các bình phương của hai đường chéo của một hình bình hành bằng hai lần tổng các bình phương của các cạnh của hình bình hành đó.

2.22. a) Trước hết ta viết 1 + i ở dạng lượng giác

$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right).$$

Từ đó

$$(1+i)^{25} = (\sqrt{2})^{25} \left(\cos\frac{25\pi}{4} + i\sin\frac{25\pi}{4}\right)$$
$$= (\sqrt{2})^{25} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
$$= 2^{12}(1+i).$$

b) Trước hết tả viết tử và mẫu ở dạng lượng giác

$$1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
$$1 - i = \sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$$

Do đó

$$\frac{1+i\sqrt{3}}{1-i} = \frac{2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)}{\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right)}$$
$$= \frac{2}{\sqrt{2}}\left(\cos\left(\frac{\pi}{3}+\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{3}+\frac{\pi}{4}\right)\right)$$
$$= \sqrt{2}\left(\cos\frac{7\pi}{12}+i\sin\frac{7\pi}{12}\right);$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

và

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20} = (\sqrt{2})^{20} \left(\cos\frac{140\pi}{12} + i\sin\frac{140\pi}{12}\right)$$
$$= 2^{19} \left(\cos\left(-\frac{4\pi}{12}\right) + i\sin\left(-\frac{4\pi}{12}\right)\right)$$
$$= 2^{10} \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$$
$$= 2^{9}(1-\sqrt{3}i).$$

c) Trước hết ta đưa số $1 - \frac{\sqrt{3}-i}{2}$ về dạng lượng giác. Làm như ở bài 2.15, p, ta thu được

$$1 - \frac{\sqrt{3-i}}{2} = \sqrt{2 - \sqrt{3}} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$$

Do đó

$$\left(1 - \frac{\sqrt{3} - i}{2}\right)^{24} = (2 - \sqrt{3})^{12} \left(\cos\frac{24\pi}{12} + i\sin\frac{24\pi}{12}\right)$$
$$= (2 - \sqrt{3})^{12}.$$

d) Đặt

$$z = \frac{(-1+i\sqrt{3})^{15}}{(1-i)^{20}}.$$

và số cấn tính là A, ta có

$$A = z + \overline{z}$$

Do đó

$$A = 2 \mathcal{R}e(z),$$

đồng thời

$$(-1 + i\sqrt{3}) = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$
$$1 - i = \sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right).$$

Ta suy ra $z = \frac{(-1+i\sqrt{3})^{15}}{(1-i)^{20}} = \frac{2^{15} \left(\cos\frac{30\pi}{3} + i\sin\frac{30\pi}{3}\right)}{2^{10} \left(\cos\frac{140\pi}{4} + i\sin\frac{140\pi}{4}\right)}$ $= 2^{5} \frac{(\cos 10\pi + i\sin 10\pi)}{(\cos 35\pi + i\sin 35\pi)} = -2^{5}.$ Do đó $A = 2\Re e(z) = -2.2^5 = -2^6 = -64.$ 2.23. The co $(1 + \cos\alpha + i\sin\alpha) = 2\cos^2\frac{\alpha}{2} + i2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}$ $= 2\cos\frac{\alpha}{2} \left[\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2} \right].$ Vây $(1 + \cos\alpha + i\sin\alpha)^n = 2^n \cos^n \frac{\alpha}{2} \left[\cos \frac{n\alpha}{2} + i\sin \frac{n\alpha}{2} \right].$ 2.24. Từ $z + \frac{1}{z} = 2\cos\theta$, ta suy ra $z^2 - 2\cos\theta z + 1 = 0, z \neq 0.$ Do đó $z = \cos\theta \pm i\sin\theta$ $\frac{1}{\pi} = \cos(-\theta) \pm i\sin(-\theta)$

 $z^{m} = \cos m\theta \pm i \sin m\theta$ $\frac{1}{z^{m}} = \cos(-m\theta) \pm i \sin(-m\theta).$

Ta suy ra

$$z^m + \frac{1}{z^m} = 2\cos m\theta.$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

2.25.
$$\left(\frac{1+itg\alpha}{1-itg\alpha}\right)^{n} = \left(\frac{\cos\alpha + i\sin\alpha}{\cos\alpha - i\sin\alpha}\right)^{n} = \frac{\cos n\alpha + i\sin n\alpha}{\cos n\alpha - i\sin n\alpha}$$
$$= \frac{1+itgn\alpha}{1-itgn\alpha}$$
2.26. a) $1 - i = \sqrt{2} \left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$
$$\sqrt{3} + i = 2 \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
$$z = \frac{1-i}{\sqrt{3}+i} = \frac{\sqrt{2}}{2} \left(\cos\left(\frac{7\pi}{4} - \frac{\pi}{6}\right) + i\sin\left(\frac{7\pi}{4} - \frac{\pi}{6}\right)\right)$$
$$= \frac{1}{\sqrt{2}} \left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right).$$

Do đó

$$\sqrt[6]{z} = \frac{1}{\frac{12}{\sqrt{2}}} \left(\cos \frac{19 + 24k}{72} \pi + i \sin \frac{19 + 24k}{72} \right)$$

k = 0, 1, 2, 3, 4, 5

b) Ta nhận thấy

$$u = \frac{1+i}{\sqrt{3-i}} = \overline{z} \; (\text{xem cau a}))$$

Do đó

$$u = \frac{1}{\sqrt{2}} \left(\cos \frac{19\pi}{12} - i \sin \frac{19\pi}{12} \right) = \frac{1}{\sqrt{2}} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right);$$

và

$$\sqrt[8]{u} = \frac{1}{\sqrt[16]{2}} \left(\cos \frac{5 + 24k}{96} \pi + i \sin \frac{5 + 24k}{96} \pi \right)$$

k = 0, 1, 2, ..., 7.

с) Та сб

$$i - 1 = -1 + i = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right),$$

$$1 + i \sqrt{3} = 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right).$$

$$1 + i \sqrt{3} = 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right).$$

Do đó

$$\begin{aligned} \psi &= \frac{i-1}{1+i\sqrt{3}} = \frac{\sqrt{2}}{2} \frac{\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}} \\ &= \frac{1}{\sqrt{2}} \left(\cos\left(\frac{3\pi}{4} - \frac{\pi}{3}\right) + i\sin\left(\frac{3\pi}{4} - \frac{\pi}{3}\right) \right) \\ &= \frac{1}{\sqrt{2}} \left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12} \right). \end{aligned}$$

Vậy

$$\sqrt[4]{v} = \frac{1}{\sqrt[12]{2}} \left(\cos \frac{5 + 24k}{72} \pi + i \sin \frac{5 + 24k}{72} \pi \right),$$

k = 0, 1, 2, ..., 5.

2.27. a) Ta có theo công thức Moivre

 $(\cos x + i\sin x)^5 = \cos 5x + i\sin 5x.$

Mặt khác theo công thức nhị thức Newton thì $(\cos x + i\sin x)^5 = \cos^5 x + C_5^1 \cos^4 x i\sin x + C_5^2 \cos^3 x (i\sin x)^2 + C_5^2 + C_5^2 + C_5^2 + C_5^2 + C_5^2 + C_5^2$

+ $C_5^3 \cos^2 x (i \sin x)^3$ + $C_5^4 \cos x (i \sin x)^4$ + $(i \sin x)^5$.

Vậy với chú ý rằng $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, ta có $\cos 5x + i \sin 5x = \cos^5 x + i 5 \cos^4 x \sin x - 10 \cos^3 x \sin^2 x$

 $-i.10\cos^2 x \sin^3 x + 5\cos x \sin^4 x + i \sin^5 x =$

 $=\cos^5 x - 10\cos^3 x \sin 2x + 5\cos x \sin^4 x +$

 $+ i(5\cos^4x\sin x - 10\cos^2x\sin^3x + \sin^5x).$

Hai số phức bằng nhau khi chúng có phần thực bằng nhau và phần ảo bằng nhau. Ta suy ra

$$\cos 5x = \cos^5 x - 10\cos^3 x \sin^2 x + 5\cos x \sin^4 x.$$

Nếu muốn ta cũng có

 $sin5x = 5cos^4xsinx - 10cos^2xsin^3x + sin^5x$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 5-BT.TCC.T1 65

b) Một cách tương tự, ta có

$$(\cos x + i\sin x)^8 = \cos^8 x + i\sin^8 x.$$

 $(\cos x + i\sin x)^8 = \cos^8 x + C_8^1 \cos^7 x (i\sin x) +$
 $+ C_8^2 \cos^6 x (i\sin x)^2 + C_8^3 \cos^5 x (i\sin x)^3 +$
 $+ C_8^4 \cos^4 x (i\sin x)^4 + C_8^5 \cos^3 x (i\sin x)^5 +$
 $+ C_8^6 \cos^2 x (i\sin x)^6 + C_8^7 \cos x (i\sin x)^7 + (i\sin x),$
với $i^2 = -1, i^3 = -i, i^4 = 1, i^5 = i, i^6 = -1, i^7 = -i, \tan x y ra$
 $\cos^8 x = \cos^8 x - 28 \cos^6 x \sin^2 x + 70 \cos^4 x \sin^4 x -$
 $- 28 \cos^2 x \sin^6 x + \sin^8 x.$
c) Một cách tương tự, từ
 $(\cos x + i\sin x)^6 = \cos^6 x + C_6^1 \cos^5 x (i\sin x) +$
 $+ C_6^2 \cos^4 x (i\sin x)^2 + C_6^3 \cos^3 x (i\sin x)^3 +$
 $+ C_6^4 \cos^2 x (i\sin x)^4 + C_6^5 \cos x (i\sin x)^5 + (i\sin x)^6,$
ta suy ra
 $\sin^6 x = 6 \cos^5 x \sin x - 20 \cos^3 x \sin^3 x + 6 \cos x \sin^5 x.$
d) Một cách tương tự, từ

 $(\cos x + i\sin x)^{7} = \cos 7x + i\sin 7x.$ $(\cos x + i\sin x)^{7} = \cos^{7}x + C_{7}^{1}\cos^{6}x(i\sin x) +$ $+ C_{7}^{2}\cos^{5}x(i\sin x)^{2} + C_{7}^{3}\cos^{4}x(i\sin x)^{3} +$ $+ C_{7}^{4}\cos^{3}x(i\sin x)^{4} + C_{7}^{5}\cos^{2}x(i\sin x)^{5} +$ $+ C_{7}^{6}\cos x(i\sin x)^{6} + (i\sin x)^{7}$

ta suy ra

 $\sin 7x = 7\cos^{6}x\sin x - 35\cos^{4}x\sin^{3}x + 21\cos^{2}x\sin^{5}x - \sin^{7}x$. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 66 2.28. Ta có theo bài 2.27, c :

 $(\cos x + i\sin x)^6 = \cos 6x + i\sin 6x$

 $\cos 6x + i \sin 6x = \cos^6 x - 15 \cos^4 x \sin^2 x$

 $+ 15\cos^2 x \sin^4 x - \sin^6 x +$

+ $i[6\cos^5x\sin x - 20\cos^3x\sin^3x + 6\cos x\sin^5x]$.

Từ đó ta suy ra biểu thức của cos6x và sin6x theo cosx và sinx. Sau đó

$$tg6x = \frac{\sin 6x}{\cos 6x} = \frac{6\cos^5 x \sin x - 20\cos^3 x \sin^3 x + 6\cos x \sin^5 x}{\cos^5 x - 15\cos^4 x \sin^2 x + 15\cos^2 x \sin^4 x - \sin^6 x}$$

Chia tử và mẫu cho $\cos^6 x$:

$$tg6x = \frac{2(3tgx - 10tg^3x + 3tg^5x)}{1 - 15tg^2x + 15tg^4x - tg^6x}$$

2.29. Ta có

$$1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right).$$

Do đó

$$(1+i)^{n} = 2^{n/2} \left(\cos \frac{n\pi}{4} + i\sin \frac{n\pi}{4} \right).$$

$$2.30. \cos^{5}\theta = \cos\theta(\cos^{4}\theta) = \cos\theta \left(\frac{1+\cos^{2}\theta}{2} \right)^{2}$$

$$= \frac{\cos\theta}{4} \left[1 + 2\cos^{2}\theta + \cos^{2}2\theta \right]$$

$$= \frac{\cos\theta}{4} \left[1 + 2\cos^{2}\theta + \frac{1+\cos^{4}\theta}{2} \right]$$

$$= \frac{3}{8}\cos\theta + \frac{1}{2}\cos\theta\cos^{2}\theta + \frac{1}{8}\cos\theta\cos^{4}\theta$$

$$= \frac{3}{8}\cos\theta + \frac{1}{4} \left[\cos^{3}\theta + \cos\theta\right] + \frac{1}{16} \left[\cos^{5}\theta + \cos^{3}\theta\right]$$

$$\cos^{5}\theta = \frac{1}{16}\cos^{5}\theta + \frac{5}{16}\cos^{3}\theta + \frac{5}{8}\cos^{2}\theta.$$

$$\sin^{5}\theta = \sin\theta(\sin^{4}\theta) = \sin\theta \left(\frac{1-\cos 2\theta}{2}\right)^{2}$$
$$= \frac{\sin\theta}{4} \left[1 - 2\cos 2\theta + \cos^{2} 2\theta\right]$$
$$= \frac{\sin\theta}{4} \left[1 - 2\cos 2\theta + \frac{1+\cos 4\theta}{2}\right]$$
$$= 3\frac{\sin\theta}{8} - \frac{1}{2}\sin\theta\cos 2\theta + \frac{1}{8}\sin\theta\cos 4\theta$$
$$= \frac{3}{8}\sin\theta - \frac{1}{4}\left[\sin 3\theta - \sin\theta\right] + \frac{1}{16}\left[\sin 5\theta - \sin 3\theta\right]$$
$$\sin^{5}\theta = \frac{1}{16}\sin 5\theta - \frac{5}{16}\sin 3\theta + \frac{5}{8}\sin\theta$$
2.31. Biệt số của phương trình đã cho là
$$\Delta = 3 - 4 = -1 = i^{2}$$

Do do

$$x_1 = \frac{-\sqrt{3}+i}{2}, \quad x_2 = \frac{-\sqrt{3}-i}{2}$$

Vậy

$$x_1 = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$$

$$x_2 = \cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6} = \cos\frac{5\pi}{6} - i\sin\frac{5\pi}{6}$$

2.32. Biệt số của phương trình đã cho là

1

$$\Delta = (1 + i\sqrt{3})^2 - 4(-1 + i\sqrt{3})$$

= $2(1 - i\sqrt{3}) = 2^2 \left(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\right)$
 $\sqrt{\Delta} = 2 \left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right) = -\sqrt{3} + i.$

Do đó

$$z_1 = \frac{(1+i\sqrt{3}) - \sqrt{3} + i}{2} = \frac{1-\sqrt{3}}{2} + i\frac{\sqrt{3}+1}{2}$$

$$z_2 = \frac{(1+i\sqrt{3})+\sqrt{3}-i}{2} = \frac{1+\sqrt{3}}{2} + i\frac{\sqrt{3}-1}{2}$$

2.33. Xet phương trình

 $x^6 - 7x^3 - 8 = 0$

Đặt $x^3 = z$, ta có

$$z^2-7z-8=0$$

Do đo

$$z_1 = 8$$
 $z_2 = -1$

Ta suy ra các nghiệm

$$\sqrt[3]{z_1} = \sqrt[3]{8} = 2\left(\cos\frac{2k\pi}{3} + i\sin\frac{2k\pi}{3}\right), k = 0, 1, 2.$$
$$\sqrt[3]{z_2} = \sqrt[3]{-1} = \cos\frac{\pi + 2k\pi}{3} + i\sin\frac{\pi + 2k\pi}{3}$$
$$k = 0, 1, 2.$$

2.6. ĐA THỨC

2.34. a)
$$2x^4 - 3x^3 + 4x^2 - 5x + 6$$

 $2x^4 - 6x^3 + 2x^2$
 $3x^3 + 2x^2 - 5x + 6$
 $3x^3 - 9x^2 + 3x$
 $11x^2 - 8x + 6$
 $11x^2 - 33x + 11$
 $25x - 5$

Vậy

$$\frac{2x^4 - 3x^3 + 4x^2 - 5x + 6}{x^2 - 3x + 1} = 2x^2 + 3x + 11 + \frac{25x - 5}{x^2 - 3x + 1}$$

b)
$$x^{3} - 3x^{2} - x - 1$$

 $x^{3} - \frac{2}{3}x^{2} + \frac{1}{3}x$
 $-\frac{7}{3}x^{2} + \frac{4}{3}x - 1$
 $-\frac{7}{3}x^{2} + \frac{14}{9}x - \frac{7}{9}$
 $-\frac{2}{9}x - \frac{2}{9}$

Vây

$$\frac{x^{3} - 3x^{2} - x + 1}{3x^{2} - 2x + 1} = \frac{1}{3}x - \frac{7}{9} - \frac{2x + 2}{9(3x^{2} - 2x + 1)}$$
c) $x^{4} + ix^{3} - ix^{2} + x + 1$
 $x^{4} - ix^{3} + x^{2}$
 $2ix^{3} - (i + 1)x^{2} + x + 1$
 $\frac{2ix^{3} + 2x^{2} + 2ix}{-(3 + i)x^{2} - (1 - 2i)x + 1}$
 $-(3 + i)x^{2} - (1 - 2i)x + 1$
 $-(3 + i)x^{2} + (3i - 1)x - (3 + i)$
 $(-5i + 2)x + 4 + i$

Vậy

$$\frac{x^4 + ix^3 - ix^2 + x + 1}{x^2 - ix + 1} = x^2 + 2ix - 3 - i + \frac{(2 - 5i)x + 4 + i}{x^2 - ix + 1}$$

2.35. Trước hết ta làm phép chia

v + i + m²)x + q − m 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 70

Do do $x^3 + px + q = (x^2 + mx - 1)(x - m) + (p + 1 + m^2)x + q - m.$

Vậy muốn cho $x^3 + px + q$ chia hết cho $x^2 + mx - 1$, điều kiên cản và đủ là

$$q - m = 0, p + 1 + m^{2} = 0$$
2.36.
$$x^{4} + px^{2} + q$$

$$x^{4} + mx^{3} + x^{2}$$

$$- mx^{3} + (p - 1)x^{2} + q$$

$$- mx^{3} - m^{2}x^{2} - mx$$

$$(p - 1 + m^{2})x^{2} + mx + q$$

$$(p - 1 + m^{2})x^{2} + m(p - 1 + m^{2})x + p - 1 + m^{2}$$

$$- m(p - 2 + m^{2})x + q - p + 1 - m^{2}$$

Vậy muốn cho $x^4 + px^2 + q$ chia hết cho $x^2 + mx + 1$ điều kiện cần và đủ là số dư bằng 0, nghĩa là

1) m = 0, q - p + 1 = 02) $m = \pm \sqrt{2 - p}, q = 1$ 2.37. a) Xét phương trình

 $x^4 - 2x^2\cos\varphi + 1 = 0$

 $\text{Dat } x^2 = z$

$$z^2 - 2z\cos\varphi + 1 = 0$$

$$\Delta' = \cos^2 \varphi - 1 = i^2 (1 - \cos^2 \varphi) = i^2 \sin^2 \varphi$$

Do đó

$$z_1 = \cos\varphi + i\sin\varphi$$
$$z_2 = \cos\varphi - i\sin\varphi$$

và

$$x_1 = \cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}, \qquad x_2 = -\cos\frac{\varphi}{2} - i\sin\frac{\varphi}{2}$$
$$x_3 = \cos\frac{\varphi}{2} - i\sin\frac{\varphi}{2}, \qquad x_4 = -\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}$$

Vậy

$$x^{4} - 2x^{2}\cos\varphi + 1 = \left(x - \cos\frac{\varphi}{2} - i\sin\frac{\varphi}{2}\right) \left(x + \cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right) \times \left(x - \cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right) \left(x + \cos\frac{\varphi}{2} - i\sin\frac{\varphi}{2}\right)$$

b) Ta co

$$x^3 - 6x^2 + 11x - 6 = x^3 - 1 - 6(x^2 - 1) + 11(x - 1) =$$

 $= (x - 1)[x^2 + x + 1 - 6(x + 1) + 11] =$
 $= (x - 1)(x^2 - 5x + 6).$

Nên

x4

$$x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3).$$

c) Ta có

$$\begin{aligned} x^4 + 4 &= (x^2)^2 - i^2 2^2 = (x^2 - 2i)(x^2 + 2i) \\ &= (x - \sqrt{2} \sqrt{i})(x + \sqrt{2} \sqrt{i})(x - \sqrt{2} i \sqrt{i})(x + \sqrt{2} i \sqrt{i}). \end{aligned}$$

Vi
$$\sqrt{i} = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}$$
.

nên

$$x^{4} + 4 = (x - 1 - i)(x + 1 + i)(x + 1 - i)(x - 1 + i).$$

d) Xét phùơng trình

$$x^4 - 10x^2 + 1 = 0.$$

Xem $x^2 = z$ ta có

$$z^2 - 10z + 1 = 0$$

 $\Delta' = 25 - 1 = 24$

Do đó

$$z_1 = 5 + \sqrt{24} > 0$$

$$z_2 = 5 - \sqrt{24} > 0$$

Ta viết

$$\sqrt{z_1} = \sqrt{5 + \sqrt{24}} = \sqrt{a} + \sqrt{b}.$$

Binh phương 2 vế ta được

 $5 + \sqrt{24} = a + b + 2\sqrt{ab}$

Do đó

a + b = 5, ab = 6 $b = \frac{6}{a} \qquad a + \frac{6}{a} = 5$ $a^2 - 5a + 6 = 0$ $a = 2 \qquad b = 3$ $a = 3 \qquad b = 2$

Vậy

$$x_{1,2} = \pm \sqrt{z_1} = \pm (\sqrt{2} + \sqrt{3})$$

Một cách tương tự

$$x_{3,4} = \pm \sqrt{z_2} = \pm (\sqrt{2} - \sqrt{3}).$$

Ta suy ra

$$\begin{aligned} x^4 - 10x^2 + 1 &= (x - x_1)(x - x_2)(x - x_3)(x - x_4) = \\ &= (x - \sqrt{2} - \sqrt{3})(x + \sqrt{2} + \sqrt{3})(x - \sqrt{2} + \sqrt{3})(x + \sqrt{2} - \sqrt{3}). \end{aligned}$$

2.7. PHÂN THỨC HỮU TỈ

2.38. a) Xét phân thức hữu tỉ

$$R = \frac{(x-1)^3}{x^2-4} = \frac{x^3-3x^2+3x-1}{x^2-4}$$

Bậc của tử lớn hơn bậc của mẫu. Phân thức này chưa phải phân thức thực sự. Ta làm phép chia tử cho mẫu.

$$R = x - 3 + \frac{7x - 13}{x^2 - 4}$$

Sau đó

$$\frac{7x-13}{x^2-4} = \frac{7x-13}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2}$$

Quy đồng mẫu số và bỏ mẫu số chung

7x - 13 = A(x + 2) + B(x - 2).

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Thay x = 2 ta duoc

$$1 = 4A \Rightarrow A = \frac{1}{4}$$

Thay x = -2 ta được

$$-27 = -4B \Rightarrow B = \frac{27}{4}.$$

Vậy có

$$\frac{(x-1)^3}{x^2-4} = x - 3 + \frac{1}{4(x-2)} + \frac{27}{4(x+2)}$$

b) Xét phân thức hữu tỉ

$$R = \frac{2x(x^2+1)}{(x^2-1)^2}.$$

Bậc của tử là 3, bé thua bậc của mẫu là 4. Phân thức này là phân thức thực sự. Do đó

$$R = \frac{2x(x^2 + 1)}{(x - 1)^2(x + 1)^2} =$$

= $\frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{(x + 1)} + \frac{D}{(x + 1)^2}$.

Quy đồng mẫu số và bỏ mẫu số chung

$$2x(x^{2} + 1) = A(x - 1)(x + 1)^{2} + B(x + 1)^{2} + C(x + 1)(x - 1)^{2} + D(x - 1)^{2}.$$

Thay x = 1 .

$$2(1+1) = B(1+1)^2 \Rightarrow B = 1.$$

Thay x = -1

$$-2(1+1) = D(-1-1)^2 \Rightarrow D = -1.$$

Thay x = i

$$0 = A(i - 1)(i + 1)^{2} + B(i + 1)^{2} + C(i + 1)(i - 1)^{2} + D(i - 1)^{2}$$

$$0 = A(i^{2} - 1)(i + 1) + B(2i) + C(i^{2} - 1)(i - 1) + D)(-2i)$$

$$0 = A(-2)(i + 1) + B(2i) + C(-2)(i - 1) + D)(-2i)$$

$$0 = -2A + 2C + i(-2A + 2B - 2C - 2D).$$

Số phức bằng 0 khi phần thực bằng 0, phần ảo bằng 0. Ta suy ra

$$-2A + 2C = 0, \quad -2A + 2B - 2C - 2D = 0$$

Do đó

$$A = C = 1$$

Vậy

$$\frac{2x(x^2+1)}{(x-1)^2(x+1)^2} = \frac{1}{x-1} + \frac{1}{(x-1)^2} + \frac{1}{x+1} - \frac{1}{(x+1)^2}$$

c) Xét phân thức ·

$$R = \frac{1}{x(x-1)^3}$$

là một phân thức hữu tỉ thực sự.

Ta viết

$$R = \frac{A}{x} + \frac{B}{(x-1)} + \frac{C}{(x-1)^2} + \frac{D}{(x-1)^3}$$

Quy đồng mẫu số và bỏ mẫu số chung

 $1 = A(x - 1)^3 + Bx(x - 1)^2 + Cx(x - 1) + Dx$ Thay x = 0

 $1 = -A \Rightarrow A = -1.$

Thay x = 1

$$1 = D \Rightarrow D = 1.$$

Thay x = i $1 = A(i-1)^3 + Bi(i-1)^2 + Ci(i-1) + Di$ 1 = 2A + 2B - C + i(2A - C + D).

Ta suy ra

$$2A - C + D = 0 \Rightarrow C = 2A + D = -2 + 1$$
$$2A + 2B - C = 1 \Rightarrow B = \frac{1 + C - 2A}{2} = 1$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

75

Vậy

$$\frac{1}{x(x-1)^3} = -\frac{1}{x} + \frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{1}{(x-1)^3}$$

d) Xét phân thức

 $\frac{x^2+1}{(x^2-1)(x^2+x+1)}$ là phân thức hữu tỉ thực sự. Ta có

$$\frac{x^2+1}{(x^2-1)(x^2+x+1)} = \frac{x^2+1}{(x-1)(x+1)(x^2+x+1)}$$
$$= \frac{A}{x-1} + \frac{B}{(x+1)} + \frac{Cx+D}{x^2+x+1}$$

Quy đồng mẫu số và bỏ mẫu số chung

$$x^{2} + 1 = A(x + 1)(x^{2} + x + 1) + B(x - 1)(x^{2} + x + 1) + (Cx + D)(x - 1)(x + 1).$$

where the formula is the formula of the formula o

Т

$$2 = A(2)(5) \implies A = \frac{1}{3}.$$

Thay $x = -1$
$$2 = B(-2) \implies B = -1.$$

Do đó

$$\frac{x^2 + 1}{(x^2 - 1)(x^2 + x + 1)} - \frac{A}{x - 1} - \frac{B}{x + 1} =$$

$$= \frac{x^2 + 1 - A(x + 1)(x^2 + x + 1) - B(x - 1)(x^2 + x + 1)}{(x^2 - 1)(x^2 + x + 1)} =$$

$$= \frac{2x + 1}{3(x^2 + x + 1)}.$$

Tam thức $x^2 + x + 1$ không có nghiệm thực. Vậy có

$$\frac{x^2+1}{(x^2-1)(x^2+x+1)} = \frac{1}{3(x-1)} - \frac{1}{x+1} + \frac{2x+1}{3(x^2+x+1)}$$
127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012
76

e) Xét phân thức không thực sự $(x^4 + 4)/(x^4 - 4)$. Ta có

$$\frac{x^4+4}{x^4-4}=\frac{x^4-4+8}{x^4-4}=1+\frac{8}{x^4-4}.$$

Ta có

$$\frac{8}{x^4 - 4} = \frac{8}{(x^2 - 2)(x^2 + 2)} =$$
$$= \frac{2[(x^2 + 2) - (x^2 - 2)]}{(x^2 - 2)(x^2 + 2)} = 2\left[\frac{1}{x^2 - 2} - \frac{1}{x^2 + 2}\right]$$

Ta có

$$\frac{1}{x^2 - 2} = \frac{1}{(x - \sqrt{2})(x + \sqrt{2})} = \frac{1}{2\sqrt{2}} \left[\frac{(x + \sqrt{2}) - (x - \sqrt{2})}{(x - \sqrt{2})(x + \sqrt{2})} \right]$$
$$= \frac{1}{2\sqrt{2}} \left[\frac{1}{x - \sqrt{2}} - \frac{1}{x + \sqrt{2}} \right].$$

Vậy

$$\frac{x^4+4}{x^4-4} = 1 + \frac{2}{2\sqrt{2}} \left[\frac{1}{x-\sqrt{2}} - \frac{1}{x+\sqrt{2}} \right] - 2\frac{1}{x^2+2}$$
$$= 1 + \frac{1}{\sqrt{2}(x-\sqrt{2})} - \frac{1}{\sqrt{2}(x+\sqrt{2})} - \frac{2}{x^2+2}.$$

f) Xét phân thức $\frac{1}{x^6+1}$

Ta có

$$\begin{array}{ll} x^6+1 & = (x^2)^3+1 = (x^2+1)(x^4-x^2+1) \\ x^4-x^2+1 & = (x^2+1)^2-3x^2 = \\ & = (x^2-\sqrt{3}x + 1)(x^2+\sqrt{3}x + 1). \end{array}$$

Do đó

$$\frac{1}{x^6+1} = \frac{1}{(x^2+1)(x^2-\sqrt{3}x+1)(x^2+\sqrt{3}x+1)}$$
$$= \frac{Ax+B}{x^2+1} + \frac{Cx+D}{x^2-\sqrt{3}x+1} + \frac{Mx+N}{x^2+\sqrt{3}x+1}.$$

Quy đồng mẫu số và bỏ mẫu số chung $1 = (Ax + B)(x^2 - \sqrt{3}x + 1)(x^2 + \sqrt{3}x + 1) +$ + $(Cx + D)(x^2 + 1)(x^2 + \sqrt{3}x + 1) + (Mx + N)(x^2 + 1)(x^2 - \sqrt{3}x + 1)$ Thay x = i là nghiêm của $x^2 + 1 = 0$; 1 = (Ai + B) = 3B + 3Ai $\Rightarrow A = 0, \quad 3B = 1 \Rightarrow B = \frac{1}{3}$ Thay $x = \frac{1}{2}(\sqrt{3} + i)$ là nghiệm của $x^2 - \sqrt{3}x + 1$, ta được $1 = \left(C\frac{\sqrt{3}+i}{2} + D\right) \left(\left(\frac{\sqrt{3}+i}{2}\right)^{2} + 1\right) 2\sqrt{3} \left(\frac{\sqrt{3}+i}{2}\right).$ Cân bằng phần thực và phần ảo ở hai vế : $D \approx \frac{1}{2}, \qquad C = -\frac{\sqrt{3}}{6}.$ Thay $x = \frac{-\sqrt{3}+i}{2}$ là nghiệm của $x^2 + \sqrt{3}x + 1$ ta được $1 = \left(M \frac{-\sqrt{3}+i}{2} + N\right) \left(\left(\frac{-\sqrt{3}+i}{2}\right)^2 + 1\right) \left(-2\sqrt{3} \frac{-\sqrt{3}+i}{2}\right).$ Cân bằng phần thực và phần ảo ở hai vế ta được

$$N=\frac{1}{3}, \qquad M=\frac{\sqrt{3}}{6}.$$

Vậy

$$\frac{1}{x^6+1} = \frac{1}{3(x^2+1)} + \frac{-\sqrt{3}x+2}{6(x^2-\sqrt{3}x+1)} + \frac{\sqrt{3}x+2}{6(x^2+\sqrt{3}x+1)}$$

g) Ta có

$$\frac{1}{(x^2+1)^2(x^2+x+1)} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{Mx+N}{x^2+x+1}.$$

Quy đồng mẫu số và bỏ mẫu số chung

 $1 = [(Ax + B)(x^{2} + 1) + (Cx + D)](x^{2} + x + 1) + (Mx + N)(x^{2} + 1)^{2}.$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 78

Thay x = i là nghiệm của $x^2 + 1 = 0$: 1 = (Ci + D)i = -C + Di, $1 = -C \Rightarrow C = -1; D = 0.$ Thay $x = \frac{-1 + \sqrt{3}i}{2}$ là nghiệm của $x^2 + x + 1 = 0$: $1 = \left(M \frac{-1 + \sqrt{3}i}{2} + N\right) \left(\left(\frac{-1 + \sqrt{3}i}{2}\right)^2 + 1\right)^2.$ Cân bằng phần thực và phần ảo ở hai về $M = 1, \qquad N = 0.$ Thay x = 0 $1 = B + D + N = B \Rightarrow B = 1.$ Thay x = 1 $1 = [(A + B)2 + (C + D)]3 + (M + N)4 \Rightarrow A = -1.$ Vậy có $\frac{1}{(x^2 + 1)^2(x^2 + x + 1)} = \frac{-x + 1}{(x^2 + 1)} - \frac{x}{(x^2 + 1)^2} \succeq \frac{x}{x^2 + x + 1}.$

Chuong III

ĐỊNH THỨC - MA TRÂN -HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

A. ĐỀ BÀI

3.1. MA TRÂN

3.1. Cho

 $A = \begin{bmatrix} 1 & 3 \\ -1 & 2 \\ 3 & 4 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 \\ 3 & 2 \\ -2 & 3 \end{bmatrix}; C = \begin{bmatrix} 2 & -3 \\ 1 & 2 \\ 4 & -1 \end{bmatrix}$ Tinh 1) (A + B) + C 2) A + (B + C); 3) 3A. 4) Tim A^{i}, B^{i}, C^{i} .

3.2. DINH THỨC

3.2. Tính các định thức cấp hai a) $\begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix}$; b) $\begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix}$; c) $\begin{vmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{vmatrix}$ d) $\begin{vmatrix} a & c + di \\ c - di & b \end{vmatrix}$; e) $\begin{vmatrix} tg \alpha & -1 \\ 1 & tg \alpha \end{vmatrix}$ 3.3. Tính các định thức cấp ba a) $\begin{vmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{vmatrix}$ b) $\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

c)
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{vmatrix}$$
 d) $\begin{vmatrix} 1 & i & 1+i \\ -i & 1 & 0 \\ 1-i & 0 & 1 \end{vmatrix}$

3.4. Cho

$$\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = \Delta$$

Hỏi các định thức sau

a)
$$\begin{vmatrix} a^{*} & b^{*} & c^{*} \\ a^{**} & b^{**} & c^{**} \\ a & b & c \end{vmatrix}$$
 b) $\begin{vmatrix} a^{**} & b^{**} & c^{**} \\ a^{*} & b^{*} & c^{*} \\ a & b & c \end{vmatrix}$

bằng bao nhiêu ?

3.5. Cho

$$\begin{vmatrix} a & a & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \\ a''' & b''' & c''' & d''' \end{vmatrix} = \Delta$$

Hỏi các định thức sau bằng bao nhiêu :

a)
$$\begin{vmatrix} b & c & d & a \\ b' & c' & d' & a' \\ b'' & c'' & d'' & a'' \\ b''' & c''' & d''' & a''' \end{vmatrix}$$
, b)
$$\begin{vmatrix} d & c & b & a \\ d' & c' & b' & a' \\ d'' & c'' & b'' & a''' \\ d''' & c''' & b''' & a''' \end{vmatrix}$$

3.6. Giải phương trình

$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = 0$$

3.7. Biết rằng các số 204, 527, 255 chia hết cho 17. Hāy chúng minh

chia hết cho 17 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 6-вт.тсс.ті 81 3.8. Chúng minh

 $\begin{vmatrix} b + c & c + a & a + b \\ b' + c' & c' + a' & a' + b' \\ b'' + c'' & c'' + a'' & a'' + b'' \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix}$

3.9. Tinh định thức

$$\begin{vmatrix} 1 & 0 & -1 & -1 \\ 0 & -1 & -1 & 1 \\ a & b & c & d \\ -1 & -1 & 1 & 0 \end{vmatrix}$$

bằng cách khai triển nó theo các phần tử của hàng ba.

3.10. Tinh định thức :

bằng cách khai triển nó theo các phần tử của cột bốn. 3.11. Tính các định thức sau

1)	13547 13647 28423 28523	246 427 327 2) 1014 543 443 - 342 721 621
3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8) $\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$

3.12. Chủng minh

$$\Delta_{n} = \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_{1} & x_{2} & \dots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \dots & x_{n}^{2} \\ \dots & \dots & \dots & \dots \\ x_{1}^{n-1} & x_{2}^{n-1} & \dots & x_{n}^{n-1} \end{vmatrix} = \\ = (x_{2} - x_{1})(x_{3} - x_{1}) \dots (x_{n} - x_{1}).(x_{3} - x_{2}) \dots (x_{n} - x_{2}). \\ \dots & \dots & \dots & \dots & \dots \\ = \prod_{i>j} (x_{i} - x_{j}). \end{vmatrix}$$

3.3. PHÉP NHÂN MA TRẬN VỚI MA TRẬN – MA TRẬN NGHỊCH ĐẢO

3.13. Hãy nhân các ma trận :

a) $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$; b) $\begin{bmatrix} 3 & 5 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 1 & 1 \\ 3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$; e) $\begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ f) $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$; g) $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$ 3.14. Hāy thực hiện các phép tính sau

a) $\begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}^2$; b) $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}^3$; c) $\begin{bmatrix} 3 & 2 \\ -4 & -2 \end{bmatrix}^5$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 83

d)
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n$$
; e) $\begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}^n$
3.15. Hāy tính AB - BA nếu
a) $A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$; $B = \begin{bmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$
b) $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 3 & 1 & -2 \\ 3 & -2 & 4 \\ -3 & 5 & -1 \end{bmatrix}$
3.16. Chứng minh rằng nếu $AB = BA$ thì

a)
$$(A + B)^2 = A^2 + 2AB + B^2$$

b) $A^2 - B^2 = (A + B)(A - B)$

3.17. Hãy tìm tất cả các ma trận B giao hoán với ma trận A, nghĩa là AB = BA, dưới đây :

a)
$$A = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$$
; b) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 1 & 2 \end{bmatrix}$;

3.18. Hāy tìm f(A) với

$$f(x) = x^2 - 5x + 3$$
 và $A = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix}$

3.19. Hãy tìm tất cả các ma trận cấp hai có bình phương bằng ma trận không.

3.20. Hây tìm tất cả các ma trận cấp hai có bình phương bằng ma trận đơn vị.

3.21. Cho

$$A = \begin{bmatrix} -1 & 1 & 2\\ 2 & 0 & 3\\ -2 & -1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 2\\ 1 & -2\\ 3 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

Hāy kiểm tra lại tính kết hợp

(AB)C = A(BC)

của phép nhân ma trận.

3.22. Cho

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix}$$

Hāy tính

1) A^{t} ; 2) B^{t} ; 3) $A^{t}B^{t}$; 4) $B^{t}A^{t}$. 5) $(AB)^{t}$; 6) $(BA)^{t}$; 7) $(A + B)^{t}$. **2.22** Giải phương trìph AX = B đối với ốn

3.23. Giải phương trình AX = B đối với ấn là ma trận X, với

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ -2 & 3 & 1 \end{bmatrix}; \quad B = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 0 & 2 & 2 \\ 1 & -2 & 2 & 0 \end{bmatrix}$$

3.24. Dùng phương pháp Gauss – Jordan tính ma trận nghịch đảo của các ma trận sau

a)
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
; b) $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$;
c) $A = \begin{bmatrix} 1 & 3 & -5 & 7 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

3.25. Dùng phương pháp Gauss - Jordan tính ma trận nghịch đảo của các ma trận sau

1)
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
; 2) $A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & -3 & 2 \end{bmatrix}$;
3) $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 2 \\ 1 & 3 & -1 \end{bmatrix}$; 4) $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

85

5)
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$
; 6) $A = \begin{bmatrix} 2 & -3 \\ -6 & 9 \end{bmatrix}$;
7) $A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ 2 & 2 & 0 \end{bmatrix}$; 8) $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$;
9) $A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 1 & 3 \\ 4 & -2 & -1 \end{bmatrix}$; 10) $A = \begin{bmatrix} 1 & -2 & 1 & -1 \\ -1 & 4 & -2 & 3 \\ 2 & 0 & 1 & 3 \\ -2 & 6 & 0 & 5 \end{bmatrix}$;
11) $A = \begin{bmatrix} 2 & -1 & 0 & 3 \\ 1 & 1 & 2 & -1 \\ -1 & 2 & 3 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$

3.26. Cho ma trận chéo

Δ	a ₁₁ 0	0 a ₂₂	0		0 0 a _{nn}
<i>A</i> –	 0	 0	 0	••••	a _{nn}

trong đó $a_{11} a_{22} \dots a_{nn} \neq 0$. Chứng minh rằng A khả đảo và tìm A^{-1} .

3.27. Chứng minh rằng nếu A là ma trận vuông thỏa mãn $A^2 - 3A + I = 0$ thì $A^{-1} = 3I - A$.

3.28. Cho hai ma trận vuông A và B sao cho AB = 0. Chứng minh rằng A không thể khả đảo trừ khi B = 0.

3.29. Chứng minh rằng nếu A khả đảo và AB = AC thì B = C.

3.30. A là một ma trận vuông cấp n.

1) Cho det(A) = 3, hãy tính det(A^2) và det(A^3).

2) Cho biết A khả đảo và det(A) = 4, tính $det(A^{-1})$.

3) Cho det(A) = 5 và $B^2 = A$, tính det(B).

4) Cho det(A) = 10, tinh det(A'A).

3.31. Hỏi các ma trận sau có khả đảo không, nếu có, hãy tìm ma trận nghịch đảo bằng phụ đại số :

1)
$$\begin{bmatrix} 2 & -1 \\ 3 & 3 \end{bmatrix}$$
; 2) $\begin{bmatrix} -1 & 2 \\ 3 & -6 \end{bmatrix}$;
3) $\begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ 2 & 1 & 1 \end{bmatrix}$; 4) $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$;
5) $\begin{bmatrix} 1 & 4 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.

3.4. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

3.32. Áp dụng định lí Cramer giải các hệ sau

1) $\begin{cases} 2x + 5y = 1 \\ 4x + 5y = -5 \end{cases}$ 2) $\begin{cases} x + 2y = 4 \\ 2x + y = 3 \end{cases}$ 3) $\begin{cases} 2x - 2y - z = -1 \\ y + z = 1 \\ -x + y + z = -1 \end{cases}$ 4) $\begin{cases} x - y + z = 1 \\ 2x + y + z = 2 \\ 3x + y + 2z = 0 \end{cases}$ 5) $\begin{cases} 2x_1 - x_2 - x_3 = 4 \\ 3x_1 + 4x_2 - 2x_3 = 11 \\ 3x_1 - 2x_2 + 4x_3 = 11 \end{cases}$ 6) $\begin{cases} 3x_1 + 2x_2 + x_3 = 5 \\ 2x_1 + 3x_2 + x_3 = 1 \\ 2x_1 + x_2 + 3x_3 = 11 \end{cases}$ 7) $\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ 2x_1 - x_2 - 2x_3 - 3x_4 = 8 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \\ 2x_1 - 3x_2 + 2x_3 + x_4 = -8 \end{cases}$ 8) $\begin{cases} x_2 - 3x_3 + 4x_4 = -5 \\ x_1 - 2x_3 + 3x_4 = -4 \\ 3x_1 + 2x_2 - 5x_4 = 12 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$

3.33. Hỏi các mệnh để sau là đúng hay sai

1) Theo định lí Cramer, nếu det(A) = 0 thì hệ AX = B vô nghiệm. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 87

8 4 N Q

2) Theo định lí Cramer, nếu AX = 0 có nghiệm không tầm thường thì det (A) = 0.

3.34. Tìm ma trận X thỏa mãn phương trình

a)
$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} X = \begin{bmatrix} 4 & -6 \\ 2 & 1 \end{bmatrix}$$

b) $X \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5 \end{bmatrix}$
3.35. Hay giải các hệ sau bằng cách tính ma trận nghịch đảo
1) $\begin{bmatrix} 3x + 4y = 2 \\ 4x + 5y = 3 \end{bmatrix};$ 2) $\begin{cases} -3x + 2y = -1 \\ 2x + 4y = -6 \end{bmatrix};$
3) $\begin{bmatrix} 3x + 4y = 3 \\ 4x + 5y = 2 \end{bmatrix};$ 4) $\begin{cases} -3x + 2y = -6 \\ 2x - 4y = 1 \end{bmatrix}$
3.36. Giải 1) $\begin{cases} 2x + 3y = 4 \\ 2y = 4 \end{bmatrix}$
2) $\begin{cases} 2x_1 + x_2 - 4x_3 + 2x_4 = 2 \\ \cdot & 3x_2 + x_3 + x_4 = 6 \\ & 2x_3 + 3x_4 = -1 \end{bmatrix};$
3.37. Áp dụng phương pháp Gauss giải các hệ sau :
1) $\begin{cases} 1,2x - 0,8y = -2,0 \\ -1,5x + 0,25y = -4,0 \end{bmatrix}$
2) $\begin{cases} x + y + z = 1 \\ x + 2y + 3y = -1 \\ x + 4y + 9z = -9 \end{bmatrix};$
3) $\begin{cases} x_1 - x_2 + x_3 - x_4 = 2 \\ x_1 - x_3 + 2x_4 = 0 \\ -x_1 + 2x_2 - 2x_3 + 7x_4 = -7 \\ 2x_1 - x_2 - x_3 = 3 \end{bmatrix};$

$$\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 + x_5 = 3 \\ 2x_1 + x_2 + 5x_3 + 2x_4 + 2x_5 = 6 \\ -x_1 + 4x_2 - 6x_4 + x_5 = -3 \\ -2x_1 - 4x_2 - 4x_3 - x_4 + x_5 = -3 \\ 2x_1 + 4x_2 + 4x_3 + 7x_4 - x_5 = 9 \end{cases}$$

3.38. Với các giá trị nào của a thì hệ sau đây không có nghiệm duy nhất:

1)
$$\begin{cases} x - 2y = 5 \\ 3x + ay = 1 \end{cases}$$
 2)
$$\begin{cases} x - y + 2z = 3 \\ 2x + ay + 3z = 1 \\ 3x + 3y + z = 4 \end{cases}$$

3.39. Tìm những giá trị của a để hai hệ sau tương đương

x	+ 2y	÷	1	(x	+	ay	=	4
2x	+ 5y	=	1	∫-x	+	2у	=	-5

3.40. Viết nghiệm của các hệ sau theo a, b, c

1)
$$\begin{cases} x + 3y = a \\ 2x + 2y = b \end{cases}$$
 2)
$$\begin{cases} x + y - z = a \\ x + 2y - 2z = b \\ 2x - y + 2z = c \end{cases}$$

3.41. Xác định a để hệ sau có nghiệm không tấm thường 1) $\begin{cases} ax - 3y + z = 0 \\ 2x + y + z = 0 \\ 3x + 2y - 2z = 0 \end{cases}$ 2) $\begin{cases} (1 - a)x + 2y = 0 \\ 2x + (4 - a)y = 0 \end{cases}$

3.5. HẠNG CỦA MA TRÂN – HỆ PHƯƠNG TRÌNH TUYẾN TÍNH TỔNG QUÁT

3.42. Trong các hệ sau đây, hệ nào có nghiệm không tẩm thường, hệ nào không có :

1)
$$\begin{cases} x_1 + 3x_2 + 5x_3 + x_4 = 0\\ 4x_1 - 7x_2 - 3x_3 - x_4 = 0\\ 3x_1 + 2x_2 + 7x_3 + 8x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ x_2 + 4x_3 = 0 \\ 5x_3 = 0 \end{cases}$$

2

3.43. Tìm hạng của các ma trận sau :

a)
$$A = \begin{bmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{bmatrix}$
c) $A = \begin{bmatrix} 4 & 3 & -5 & 2 & 3 \\ 8 & 6 & -7 & 4 & 2 \\ 4 & 3 & -8 & 2 & 7 \\ 4 & 3 & 1 & 2 & -5 \\ 8 & 6 & -1 & 4 & -6 \end{bmatrix}$

3.44. Xác định hạng của các ma trận sau tuỷ theo λ (λ thực) :

a)
$$A = \begin{bmatrix} 3 & \lambda & 1 & 2 \\ 1 & 4 & 7 & 2 \\ 1 & 10 & 17 & 4 \\ 4 & 1 & 3 & 3 \end{bmatrix}$$

b) $A = \begin{bmatrix} -1 & 2 & 1 & -1 & 1 \\ \lambda & -1 & 1 & -1 & -1 \\ 1 & \lambda & 0 & 1 & 1 \\ 1 & 2 & 2 & -1 & 1 \end{bmatrix}$

3.45. Giải các hệ sau và biện luận theo các tham số :

1) $\begin{cases} \lambda x + y + z = 1\\ x + \lambda y + z = \lambda\\ x + y + \lambda z = \lambda^2 \end{cases}$

2) $\begin{cases} x + ay + a^{2}z = a^{3} \\ x + by + b^{2}y = b^{3} \\ x + cy + c^{2}z = c^{3} \end{cases}$ 3) $\begin{cases} x + y + z = 1 \\ ax + by + cz = d \\ a^{2}x + b^{2}y + c^{2}z = d^{2}. \end{cases}$

B. BÀI GIẢI VÀ HƯỚNG DẤN

3.1. MA TRÂN

3.1. 1)

$$A + B = \begin{bmatrix} 1 & 3 \\ -1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 3 & 2 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+1 \\ -1+3 & 2+2 \\ 3-2 & 4+3 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 4 \\ 1 & 7 \end{bmatrix}$$
$$(A + B) + C = \begin{bmatrix} 1 & 4 \\ 2 & 4 \\ 1 & 7 \end{bmatrix} + \begin{bmatrix} 2 & -3 \\ 1 & 2 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 1+2 & 4-3 \\ 2+1 & 4+2 \\ 1+4 & 7-1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 3 & 6 \\ 5 & 6 \end{bmatrix}$$
$$2)$$

$$B + C = \begin{bmatrix} 0 & 1 \\ 3 & 2 \\ -2 & 3 \end{bmatrix} + \begin{bmatrix} 2 & -3 \\ 1 & 2 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 0+2 & 1-3 \\ 3+1 & 2+2 \\ -2+4 & 3-1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 4 & 4 \\ 2 & 2 \end{bmatrix}$$
$$A + (B + C) = \begin{bmatrix} 1 & 3 \\ -1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & -2 \\ 4 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1+2 & 3-2 \\ -1+4 & 2+4 \\ 3+2 & 4+2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 3 & 6 \\ 5 & 6 \end{bmatrix}$$

Ta suy ra

(A + B) + C = A + (B + C).

3)
$$3A = 3\begin{bmatrix} 1 & 3\\ -1 & 2\\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3(1) & 3(3)\\ 3(-1) & 3(2)\\ 3(3) & 3(4) \end{bmatrix} = \begin{bmatrix} 3 & 9\\ -3 & 6\\ 9 & 12 \end{bmatrix}$$

4) $A^{t} = \begin{bmatrix} 1 & -1 & 3\\ 3 & 2 & 4 \end{bmatrix}$
 $B^{t} = \begin{bmatrix} 0 & 3 & -2\\ 1 & 2 & 3 \end{bmatrix}$
 $C^{t} = \begin{bmatrix} 2 & 1 & 4\\ -3 & 2 & -1 \end{bmatrix}$
3.2. DINH THÚC
3.2. a) $\begin{vmatrix} 2 & 3\\ 1 & 4 \end{vmatrix} = 2.4 - 3.1 = 8 - 3 = 5$
b) $\begin{vmatrix} 2 & 1\\ -1 & 2 \end{vmatrix} = 2.2 - 1.(-1) = 4 + 1 = 5$
c) $\begin{vmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{vmatrix} = \sin\alpha .\sin\alpha + \cos\alpha .\cos\alpha = 1$
d) $\begin{vmatrix} a & c + di \\ c - di & b \end{vmatrix} = ab - (c + di)(c - di)$
 $= ab - c^{2} - d^{2}$
e) $\begin{vmatrix} tg\alpha & -1\\ 1 & tg\alpha \end{vmatrix} = tg^{2}\alpha + 1$
3.3.
a) $\begin{vmatrix} 1 & 1 & 1\\ -1 & 0 & 1\\ 1 & 0 & 1 \end{vmatrix} = 0 \begin{vmatrix} 0 & 1\\ 1 & 0 \end{vmatrix} = 1 \begin{vmatrix} 0 & 1\\ -1 & 0 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1\\ 1 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 0\\ 1 & 1 \end{vmatrix}$
 $= 0 + 1 + 1 = 1.$
b) $\begin{vmatrix} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{vmatrix} = 0 \begin{vmatrix} 0 & 1\\ 1 & 0 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1\\ 1 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 0\\ 1 & 1 \end{vmatrix}$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 92

8.0 0

3.6. $\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = 0$

là một phương trình bậc ba đối với ẩn x. Thay x = 2, vế trái là một định thức có hai hàng giống nhau, nên bằng không. Do đó x = 2 là một nghiệm của phương trình trên. Một cách tương tự ta thấy x = 3 và x = 4 cũng là nghiệm. Vậy phương trình đã cho có ba nghiệm : 2, 3, 4. Vì nó là một phương trình bậc ba, nên không thể có quá ba nghiệm. Vậy đó là tất cả các nghiệm của phương trình. °,

3.7.	2 5 2	0 2 5	4 7 5	=	2 5 2	0 2 5	$\begin{array}{c} 4 + 10(0) + 100(2) \\ 7 + 10(2) + 100(5) \\ 5 + 10(5) + 100(2) \end{array}$
				=	2 5 2	0 2 5	204 527 255

Các phần tử ở cột 3 chia hết cho 17, vậy định thức chia hết cho 17.

$$3.8. \begin{vmatrix} b+c & c+a & a+b \\ b'+c' & c'+a' & a'+b' \\ b''+c'' & c''+a'' & a''+b'' \end{vmatrix} = \\ = \begin{vmatrix} b & c+a & a+b \\ b' & c'+a' & a'+b' \\ b'' & c''+a'' & a''+b'' \end{vmatrix} + \begin{vmatrix} c & c+a & a+b \\ c' & c'+a' & a'+b' \\ c'' & c''+a'' & a''+b'' \end{vmatrix} = \\ = \begin{vmatrix} b & c & a+b \\ b' & c' & a'+b' \\ b'' & c'' & a''+b'' \end{vmatrix} + \begin{vmatrix} b & c & a+b \\ b' & a' & a'+b' \\ b'' & a'' & a''+b'' \end{vmatrix} + \begin{vmatrix} c & a & a+b \\ c' & a' & a'+b' \\ c'' & a'' & a''+b'' \end{vmatrix} = \\ = \begin{vmatrix} b & c & a \\ b' & c' & a' \\ b'' & c'' & a'' \end{vmatrix} + \begin{vmatrix} c & a & b \\ b' & a' & a''+b'' \\ b'' & a'' & a''+b'' \end{vmatrix} + \begin{vmatrix} c & a & b \\ c' & a' & b' \\ c'' & a'' & a''+b'' \end{vmatrix} = \\ = \\ downloaded 60383 pdf at Tuo | u| 21 08:20:10 | CT 2012 \end{vmatrix}$$

127.0.0.1

$$= - \begin{vmatrix} b & a & c \\ b' & a' & c' \\ b'' & a'' & c'' \end{vmatrix} - \begin{vmatrix} a & c & b \\ a' & c' & b' \\ a'' & b'' & c'' \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} + \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = 3$$

$$= 2 \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = 3$$

$$= 2 \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = (-1)^{3+1}$$

$$= (-1)^{3+1} \begin{vmatrix} 0 & -1 & -1 \\ -1 & -1 & 1 \\ -1 & -1 & 0 \end{vmatrix} + (-1)^{3+2} b \begin{vmatrix} 1 & -1 & -1 \\ 0 & -1 & 1 \\ -1 & -1 & 0 \end{vmatrix} + (-1)^{3+2} b \begin{vmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ -1 & -1 & 0 \end{vmatrix} + (-1)^{3+3} c \begin{vmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ -1 & -1 & 0 \end{vmatrix} + (-1)^{3+4} c \begin{vmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ -1 & -1 & 0 \end{vmatrix} + (-1)^{3+4} c \begin{vmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ -1 & -1 & 0 \end{vmatrix} + (-1)^{3+4} c \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} + (-1)^{2+4} y \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} + (-1)^{3+4} c \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} + (-1)^{4+4} t \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = -x - y - z + 4t.$$

$$3.11 \cdot \begin{vmatrix} 13547 & 13647 \\ 28423 & 28523 \end{vmatrix} = \begin{vmatrix} 13547 & 13547 + 100 \\ 28423 & 100 \end{vmatrix} = 100(13547 - 28423) = -1487600.$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

95

$$2) \begin{vmatrix} 246 & 427 & 327 \\ 1014 & 543 & 443 \\ -342 & 721 & 621 \end{vmatrix} = = \begin{vmatrix} 246 & 427 & 327 - 427 \\ 1014 & 543 & 443 - 543 \\ -342 & 721 & 621 - 721 \end{vmatrix} = = \begin{vmatrix} 246 & 427 & -100 \\ 1014 & 543 & -100 \\ -342 & 721 & -100 \end{vmatrix} = = -100 \begin{vmatrix} 246 & 427 & 1 \\ 1014 & 543 & 1 \\ -342 & 721 & 1 \end{vmatrix} = = -100 \begin{vmatrix} 246 & 427 & 1 \\ 1014 - 246 & 543 - 427 & 0 \\ -342 - 246 & 721 - 427 & 0 \end{vmatrix} = = -100 \begin{vmatrix} 768 & 116 \\ -588 & 294 \end{vmatrix} = = -100 \begin{vmatrix} 768 & 116 \\ -28 & 116 \\ -28 & 116 \end{vmatrix} = = -29400(768 + 232) = -29400000$$
$$3) \begin{vmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 4 & 4 & 0 & 4 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{vmatrix} = 4 \begin{vmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 2 \end{vmatrix} = -4232 = 48$$

.

97

.

6.9 9.9 9.8

$$4) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 3 & 6 \\ 0 & 1 & 4 & 10 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} = 1$$

$$5) \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 10 & 2 & 3 & 4 \\ 10 & 3 & 4 & 1 \\ 10 & 4 & 1 & 2 \\ 10 & 1 & 2 & 3 \end{vmatrix} = 10 \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & -3 \\ 0 & 1 & -3 & 1 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & 1 & -3 & 1 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & 1 & -3 & 1 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & 1 & -3 & 1 \\ -1 & 1 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & -3 \\ 0 & -3 & 1 & 1 \end{vmatrix} = 10 \begin{vmatrix} -1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 6 & 12 \\ 0 & 4 & 18 & 48 \end{vmatrix}$$

$$= 4 \begin{vmatrix} 1 & 2 & 3 \\ 2 & 9 & 24 \end{vmatrix} = 4 \begin{vmatrix} 1 & 2 & 3 \\ 0 & 3 & 12 \end{vmatrix} = 12$$
wynloaded 60383.pdf at Tue Jul 31 08:30:19 |CT 20

127.0.0.1 downloaded 60383 pdf at Tue Jul 31 08:30:19 ICT 2012 7-вт.тсс.т1

$$7) \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & a & b \\ 1 & a & 0 & c \\ 1 & b & c & 0 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 0 & -b & a - c & b \\ 0 & a - b & -c & c \\ 1 & b & c & 0 \end{vmatrix}$$
$$= -\begin{vmatrix} 1 & 1 & 1 \\ -b & a - c & b \\ a - b & -c & c \end{vmatrix} = -\begin{vmatrix} 1 & 0 & 0 \\ -b & a - c + b & 2b \\ a - b & -c - a + b & c - a + b \end{vmatrix}$$
$$= -\begin{vmatrix} a - c + b & 2b \\ -c - a + b & c - a + b \end{vmatrix} = = a^2 + b^2 + c^2 - 2(ab + bc + ca)$$

8)
$$\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix} =$$

= $\begin{vmatrix} 2(x+y) & 2(x+y) & 2(x+y) \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$
= $2(x+y) \begin{vmatrix} 1 & 1 & 1 \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$

$$= 2(x + y) \begin{vmatrix} 1 & 0 & 0 \\ y & x & x - y \\ x + y & -y & -x \end{vmatrix}$$

 $= 2(x + y) \begin{vmatrix} x & x - y \\ -y & -x \end{vmatrix} = -2(x^3 + y^3).$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 98 814.0 16.01

3.12. $\begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \cdots & \cdots & \cdots & \cdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \Delta_n.$

Xem Δ_n là một đa thức bậc n-1 đối với x_n , ta thấy nó có n-1 nghiệm $x_1, x_2, ..., x_{n-1}$. Vậy

 $\Delta_n = k(x_n - x_{n-1})(x_n - x_{n-2}) \dots (x_n - x_2)(x_n - x_1).$ So sánh hệ số của x_n^{n-1} ở về phải với hệ số của x_n^{n-1} ở định thức Δ_n , ta suy ra

 $k = \Delta_{n-1}$

Ta suy ra

$$\begin{aligned} \Delta_{n} &= \Delta_{n-1} (x_{n} - x_{n-1}) (x_{n} - x_{n-2}) \dots (x_{n-1} - x_{1}) \\ \Delta_{n-1} &= \Delta_{n-2} (x_{n-1} - x_{n-2}) (x_{n-1} - x_{n-3}) \dots (x_{n-1} - x_{1}) \\ \Delta_{3} &= \Delta_{2} (x_{3} - x_{2}) (x_{3} - x_{1}) \\ \Delta_{2} &= \begin{vmatrix} 1 & 1 \\ x_{1} & x_{2} \end{vmatrix} = x_{2} - x_{1} . \end{aligned}$$

Vậy

$$\Delta_{n} = \prod_{i>j} (x_{i} - x_{j}).$$

3.3. PHÉP NHÂN MA TRÂN VỚI MA TRÂN -MA TRÂN NGHỊCH ĐẢO

3.13. a) Ma trận cỡ 2 \times 2 nhân với ma trận cỡ 2 \times 2 cho ma trận cỡ 2 \times 2 :

$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2.1 + 1.1 & 2(-1) + 1.1 \\ 3.1 + 2.1 & 3(-1) + 2.1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 5 & -1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 & 5 \\ 6 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 3.2 + 5(-3) & 3.1 + 5.2 \\ 6.2 - 1(-3) & 6.1 - 1.2 \end{bmatrix} = \begin{bmatrix} -9 & 13 \\ 15 & 4 \end{bmatrix}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

99

c) Ma trận cỡ 3 × 3 nhân với ma trận cỡ 3 × 3 cho ma trậm cỡ 3 × 3 :

$$\begin{bmatrix} 3 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 3.1+1.2+1.1 & 3.1+1.(-1)+1.0 & 3.(-1)+1.1+1.1 \\ 2.1+1.2+2.1 & 2.1+1.(-1)+2.0 & 2.(-1)+1.1+2.1 \\ 1.1+2.2+3.1 & 1.1+2.(-1)+3.0 & 1.(-1)+2.1+3.1 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 2 & -1 \\ 6 & 1 & 1 \\ 8 & -1 & 4 \end{bmatrix}$$

d) Ma trận cỡ 2 × 3 nhân với ma trận cỡ 3 × 2 cho ma trận cỡ 2 × 2 :

$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2.3 + 1.2 + 1.1 & 2.1 + 1.1 + 1.0 \\ 3.3 + 0.2 + 1.1 & 3.1 + 0.1 + 1.0 \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 10 & 3 \end{bmatrix}$$

e) Ma trận cỡ 2 × 3 nhân với ma trận cỡ 3 × 1 cho ma trận cỡ 2 × 1 :

m

[0]

$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3.1 + 2.2 + 1.3 \\ 0.1 + 1.2 + 2.3 \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \end{bmatrix}$$

f) Ma trận cỡ 3 \times 1 nhân với ma trận cỡ 1 \times 3 cho ma trận cỡ 3 \times 3 :

$$\begin{bmatrix} 2\\1\\3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 2.1 & 2.2 & 2.3\\1.1 & 1.2 & 1.3\\3.1 & 3.2 & 3.3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6\\1 & 2 & 3\\3 & 6 & 9 \end{bmatrix}$$

g) Ma trận cỡ 1 \times 3 nhân với ma trận cỡ 3 \times 1 cho ma trận cỡ 1 \times 1 :

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{vmatrix} 2 \\ 4 \\ 1 \end{vmatrix} = \begin{bmatrix} 1.2 + 2.4 + 3.1 \end{bmatrix} = \begin{bmatrix} 13 \end{bmatrix}.$$

$$3.14. a) \begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}^{2} = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} = \\ = \begin{bmatrix} 2.2 + 1.3 + 1.0 & 2.1 + 1.1 + 1.1 & 2.9 + 1.0 + 1.2 \\ 3.2 + 1.3 + 0.0 & 3.1 + 1.1 + 0.1 & 3.1 + 1.0 + 0.2 \\ 0.2 + 1.3 + 2.0 & 0.1 + 1.1 + 2.1 & 0.1 + 1.0 + 2.2 \end{bmatrix} = \\ = \begin{bmatrix} 7 & 4 & 4 \\ 9 & 4 & 3 \\ 3 & 3 & 4 \end{bmatrix}$$

b) $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}^{2} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$
 $= \begin{bmatrix} 2.2 + 1.1 & 2.1 + 1.3 \\ 1.2 + 3.1 & 1.1 + 3.3 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 5 & 10 \end{bmatrix}$
 $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}^{2} = \begin{bmatrix} 5 & 5 \\ 5 & 10 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$
 $= \begin{bmatrix} 5.2 + 5.1 & 5.1 + 5.3 \\ 5.2 + 10.1 & 5.1 + 10.3 \end{bmatrix} = \begin{bmatrix} 15 & 20 \\ 20 & 35 \end{bmatrix}$
c) $\begin{bmatrix} 3 & 2 \\ -4 & -2 \end{bmatrix}^{5} = \begin{bmatrix} 3 & 2 \\ -4 & -2 \end{bmatrix}^{2} \begin{bmatrix} 3 & 2 \\ -4 & -2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -4 & -2 \end{bmatrix}$
 $= \begin{bmatrix} 3.3 + 2(-4) & 3.2 + 2(-2) \\ -4.3 - 2(-4) & -4.2 - 2(-2) \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -4 & -4 \end{bmatrix}$
 $\begin{bmatrix} 1 & 2 \\ -4 & -4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -4 & -4 \end{bmatrix} = \begin{bmatrix} -7 & -6 \\ 12 & 8 \end{bmatrix}$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 101

-

$$\begin{bmatrix} -7 & -6\\ 12 & 8 \end{bmatrix} \begin{bmatrix} 3 & 2\\ -4 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -2\\ 4 & 8 \end{bmatrix}$$

Vậy

$$\begin{bmatrix} 3 & 2 \\ -4 & -2 \end{bmatrix}^5 = \begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}$$

d) Muốn tính $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n$ trước hết ta tính thử

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^2 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

Từ đó ta dự đoán quy luật

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$
(3.1)

Ta chứng minh công thức này bằng phương pháp quy nạp toán học.

Giả sử nó đúng với n = m tức là

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^m = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$$

ta sẽ chứng minh nó vẫn còn đúng với n = m + 1. Thật vậy,

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{m+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^m \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & m+1 \\ 0 & 1 \end{bmatrix}$$

Vì rõ ràng công thức (3.1) đúng với n = 1

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

nên nó sẽ đúng với

n = 1 + 1 = 2n = 2 + 1 = 3v.v...

nghĩa là công thức (3.1) sẽ đúng với n (nguyên dương) bất kì. e) Ta làm tương tự trên. Ta tính thử

$$\begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}^2 = \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix} \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix} = \\ = \begin{bmatrix} \cos^2\varphi & -\sin^2\varphi & -2\sin\varphi\cos\varphi \\ 2\sin\varphi\cos\varphi & \cos^2\varphi & -\sin^2\varphi \end{bmatrix} \\ = \begin{bmatrix} \cos^2\varphi & -\sin^2\varphi \\ \sin\varphi\cos\varphi & \cos^2\varphi & -\sin^2\varphi \end{bmatrix}$$

Do đó ta dự đoán quy luật

$$\begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}^n = \begin{bmatrix} \cos n\varphi & -\sin n\varphi \\ \sin n\varphi & \cos n\varphi \end{bmatrix}$$
(3.2)

Ta chứng minh công thức này bằng quy nạp. Giả sử nó đã đúng với n = m tức là

$$\begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}^m = \begin{bmatrix} \cos m\varphi & -\sin m\varphi \\ \sin m\varphi & \cos m\varphi \end{bmatrix}$$

ta sẽ chứng minh nó vẫn còn đúng với n = m + 1. Thật vậy, ta có

$$\begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}^{m+1} = \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}^m \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}^m$$
$$= \begin{bmatrix} \cosm\varphi & -\sinm\varphi \\ \sinm\varphi & \cosm\varphi \end{bmatrix} \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}$$
$$= \begin{bmatrix} \cosm\varphi\cos\varphi - \sinm\varphi\sin\varphi & -\cosm\varphi\sin\varphi - \sinm\varphi\cos\varphi \\ \sinm\varphi\cos\varphi + \cosm\varphi\sin\varphi & -\sinm\varphi\sin\varphi + \cosm\varphi\cos\varphi \end{bmatrix}$$
$$= \begin{bmatrix} \cos(m+1)\varphi & -\sin(m+1)\varphi \\ \sin(m+1)\varphi & \cos(m+1)\varphi \end{bmatrix}.$$

Ta đã biết công thức (3.2) đúng với n = 1

$$\begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}^{1} = \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}$$

nên nó sẽ đúng với

$$n = 1 + 1 = 2$$

 $n = 2 + 1 = 3$
v.v...

nghĩa là công thức (3.2) đúng với n (nguyên dương) bất kì. 3.15.

a)
$$AB = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 11 & -5 & 0 \\ 6 & 8 & 4 \\ -1 & 11 & 4 \end{bmatrix}$$

 $BA = \begin{bmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 7 & -5 & 1 \\ 0 & 10 & 8 \\ 6 & 2 & 6 \end{bmatrix}$

Vậy

$$AB - BA = \begin{bmatrix} 4 & 0 & -1 \\ 6 & -2 & -4 \\ -7 & 9 & -2 \end{bmatrix}$$

b) $AB = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & -2 \\ 3 & -2 & 4 \\ -3 & 5 & -1 \end{bmatrix} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ -4 & 0 & 9 \end{bmatrix}$
$$BA = \begin{bmatrix} 3 & 1 & -2 \\ 3 & -2 & 4 \\ -3 & 5 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ -4 & 0 & 9 \end{bmatrix}$$

Vây
$$AB - BA = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

3.16. a) $(A + B)^2 = (A + B)(A + B)$
 $= (A + B)A + (A + B)B$

= AA + BA + AB + BB

Vì AB = BA nên $(A + B)^2 = A^2 + 2AB + B^2$ b) (A + B)(A - B) = (A + B)A + (A + B)(-B)= AA + BA - AB - BB

Vì AB = BA nên

$$(A + B)(A - B) = A^2 - B^2$$
.

3.17. a) Giả sử ma trận phải tìm có dạng

$$X = \begin{bmatrix} x & z \\ y & t \end{bmatrix}$$

Ta dựa vào điều kiện AX = XA để tìm x, y, z, t. Ta có

$$AX = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x & z \\ y & t \end{bmatrix} = \begin{bmatrix} x + 2y & z + 2t \\ -x - y & -z - t \end{bmatrix}$$
$$XA = \begin{bmatrix} x & z \\ y & t \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} x - z & 2x - z \\ y - t & 2y - t \end{bmatrix}$$

Điều kiện AX = XA tương đương với

$$\begin{cases} x + 2y = x - z \\ z + 2t = 2x - z \\ -x - y = y - t \\ -z - t = 2y - t \end{cases}$$

Phương trình đầu và phương trình cuối trùng nhau, ta có từ phương trình thứ 1 và thứ ba :

$$z = -2y$$
$$t = x + 2y$$

Thay z và t này vào phương trình thứ hai thì nó thỏa mãn. Vậy, xem x và y tùy ý thì z = -2y, t = x + 2y. Kết quả là

$$X = \begin{bmatrix} x & -2y \\ y & x + 2y \end{bmatrix}.$$

b) Cũng đặt

$$X = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$$

ta có

$$AX = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x & z \\ y & t \end{bmatrix} = \begin{bmatrix} x+y & z+t \\ y & t \end{bmatrix}$$
$$XA = \begin{bmatrix} x & z \\ y & t \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} x & x+z \\ y & y+t \end{bmatrix}$$

Điều kiện AX = XA tương đương với

 $\begin{cases} x + y = x \\ z + t = x + z \\ y = y \\ t = y + t \end{cases}$

Do đó

y = 0, x = t, z tùy ý

và

$$X = \begin{bmatrix} x & z \\ 0 & x \end{bmatrix}$$

 $X = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix}$

c) Đặt

ta có

$$\begin{bmatrix} m & n & t \end{bmatrix}$$

$$AX = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x & y & z \\ u & v & w \\ m & n & t \end{bmatrix} =$$

$$= \begin{bmatrix} x & y & z \\ u & v & w \\ 3x + u + 2m & 3y + v + 2n & 3z + w + 2t \end{bmatrix}$$

$$XA = \begin{bmatrix} x & y & z \\ u & v & w \\ m & n & t \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} x + 3z & y + z & 2z \\ u + 3w & v + w & 2w \\ m + 3t & n + t & 2t \end{bmatrix}$$

Điều kiện AX = XA tương đương với

x = x + 3z y = y + z z = 2z u = u + 3w v = v + w w = 2w 3x + u + 2m = m + 3t 3y + v + 2n = n + t 3z + w + 2t = 2t

Phương trình thứ ba chúng tỏ z = 0.

Từ đó phương trình thứ 1 và 2 chứng tỏ x và y tùy ý.

Phương trình thứ 6 chúng tỏ w = 0. Từ đó phương trình thứ 4 và 5 chúng tỏ u và v tùy ý.

Từ z = 0, w = 0, phương trình thứ 9 chứng tỏ t tùy ý. Sau đó phương trình thứ 7 và 8 cho phép biểu diễn m và

Sau do phương trình thư i và 8 cho phép biếu diễn mn theo x, y, u, v :

$$m = 3t - 3x - u$$
$$n = t - 3y - v.$$

Vậy

$$X = \begin{bmatrix} x & y & 0 \\ u & v & 0 \\ 3t - 3x - u & t - 3y - v & t \end{bmatrix}$$

3.18. Với $f(x) = x^2 - 5x + 3$ thì
 $f(A) = A^2 - 5A + 3I$

trong đó I là ma trận đơn vị cùng cấp với ma trận A. Ở đây

 $A = \begin{bmatrix} 2 & -1 \\ -3 & 3 \end{bmatrix}$

 $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

và

Ta có

$$A^{2} = \begin{bmatrix} 2 & -1 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} 7 & -5 \\ -15 & 12 \end{bmatrix}$$
$$-5A = -5 \begin{bmatrix} 2 & -1 \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} -10 & 5 \\ 15 & -15 \end{bmatrix}$$
$$3I = 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

Vậy

$$f(A) = \begin{bmatrix} 7 & -5 \\ -15 & 12 \end{bmatrix} + \begin{bmatrix} -10 & 5 \\ 15 & -15 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

3.19. Dat

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Ta phải tỉm các số a, b, c, d để

$$A^{2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Vì

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix}$$

nên điều kiện cần và đủ để $A^2 = 0$ là

	a^2	+	bc	=	0
	ab	+	bd	=	0
1	ac	÷	cd	=	0
	bc	+	bc bd cd d ²	=	0

viết lại là

$$a2 + bc = 0$$

$$d2 + bc = 0$$

$$(a + d)b = 0$$

$$(a + d)c = 0$$

Từ hai phương trình đầu suy ra $a^2 = d^2$. Do đó có hai trường hợp d = a và d = -a.

Nếu $d = a \neq 0$ thì hai phương trình cuối chứng tỏ b = 0, c = 0, từ đó hai phương trình đầu lại chứng tỏ a = 0, d = 0. Vậy không có khả năng $d = a \neq 0$.

Nếu d = -a thì phương trình thứ 3 và 4 chứng tỏ b và c tùy ý. Muốn cho phương trình thứ 1 và 2 thỏa mãn cần thêm điều kiện

$$a^2 + bc = 0$$

Vậy A có dạng

8

$$A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}, a^2 + bc = 0.$$

3.20. Như ở bài tập 3.19 ta phải tìm a, b, c, d để

$$A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Điều kiện cần và đủ để $A^2 = I$ là

$$a2 + bc = 1$$

(a + d)b = 0
(a + d)c = 0
d² + bc = 1

Hai phương trình 1 và 4 chứng tỏ $a^2 = d^2$.

Nếu $d = a \neq 0$ thỉ hai phương trình 2 và 3 chúng tỏ b = 0và c = 0. Sau đó hai phương trình 1 và 4 chúng tỏ d = a = 1hay d = a = -1. Vậy

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ hay } A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Nếu d = -a thỉ hai phương trình thứ 2 và 3 chúng tỏ b và c tùy ý. Sau đó muốn cho phương trình 1 và 4 thỏa mãn cần thêm điều kiện $a^2 + bc = 1$. Vậy có

$$A = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}, \quad a^2 + bc = 1.$$

3.21.
$$AB = \begin{bmatrix} -1 & -1 & 2 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & -2 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ 13 & 4 \\ -2 & -2 \end{bmatrix}$$

 $(AB)C = \begin{bmatrix} 5 & -4 \\ 13 & 4 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 9 \\ 9 \\ 0 \end{bmatrix}$
 $BC = \begin{bmatrix} 2 & 2 \\ 1 & -2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$
 $A(BC) = \begin{bmatrix} -1 & 1 & 2 \\ 2 & 0 & 3 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 9 \\ 0 \end{bmatrix}$

vay

(AB)C = A(BC)

5 -

3.22. 1)
$$A^{t} = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}^{t} = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$

2) $B^{t} = \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix}^{t} = \begin{bmatrix} -1 & 1 \\ 2 & 4 \end{bmatrix}$
3) $A^{t}B^{t} = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 14 \\ 3 & 3 \end{bmatrix}$
4) $B^{t}A^{t} = \begin{bmatrix} -1 & 1 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 0 & 10 \end{bmatrix}$
5) $AB = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ -2 & 10 \end{bmatrix}$
 $(AB)^{t} = \begin{bmatrix} -3 & -2 \\ 0 & 10 \end{bmatrix}$
6) $BA = \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 14 & 3 \end{bmatrix}$

$$(BA)^{t} = \begin{bmatrix} 4 & 14 \\ 3 & 3 \end{bmatrix}$$

7) $A + B = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$
 $(A + B)^{t} = \begin{bmatrix} 1 & 4 \\ 1 & 5 \end{bmatrix}$

3.23. Xét phương trình ma trận AX = B với A là ma trận vuông. Nếu A có ma trận nghịch đảo A^{-1} thì

$$A^{-1}(AX) = A^{-1}B$$
$$(A^{-1}A)X = A^{-1}B$$
$$X = A^{-1}B$$

Để xét sự tồn tại của A^{-1} ta tính định thức của ma trận A đã cho :

$$\det(A) = \begin{vmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ -2 & 3 & 1 \end{vmatrix} = 1 \neq 0$$

Vậy A có nghịch đảo

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} -1 & 4 & -3 \\ -1 & 3 & -2 \\ 1 & -1 & 1 \end{bmatrix}$$

Do đó

8,9. 8,9.

$$X = A^{-1}B = \begin{bmatrix} -1 & 4 & -3 \\ -1 & 3 & -2 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 0 & 2 & 2 \\ 1 & -2 & 2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 5 & 1 & 9 \\ 0 & 3 & 1 & 7 \\ 1 & -1 & 1 & -3 \end{bmatrix}$$
3.24. a)
$$\begin{array}{c} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 \\ 1 & 0 & 1 \end{array}$$
hàng 1 (h1)
hàng 2 (h2)
$$\begin{array}{c} 1 & 0 & 1 & -2 \\ 1 & 0 & 1 & h2 \rightarrow h2 \end{array}$$

Vậy

vay								
				A	-1 =	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$	
b)						L-	-1	
	1	2	-3	1	0		0	h1
	0	1	2	0	1		0	h2
	0	0	1	0	0		1	h3
	1	2	0	1	0		3	$h1 + 3h3 \rightarrow h1$
	0	1	0	0	1	-	-2	$h2 - 2h3 \rightarrow h2$
			1	0	. 0		1	$h3 \rightarrow h3$
	1	0	0	1	-2		7	$h1 - 2h2 \rightarrow h1$
		1	0	0	1		2	$h2 \rightarrow h2$
			1	0	0		1 ·	$h3 \rightarrow h3$
Ta ć	lược							
				A ⁻¹	$=\begin{bmatrix}1\\0\end{bmatrix}$	-	2 7 1 -2 0 1	7
c)					lo		0 1	,
1	3	-5	7	1	0	0	0	h1 ·
0	1	2	-3	0	1	0	0	h2
0	0	1	2	0	0	1	0	h3
0	0	0	1	0	0	0	1	h4
1	3	-5	0	1	0	0	-7	$h1 - 7h4 \rightarrow h1$
, 0	1	2	0	0	1	0	3	$h2 + 3h4 \rightarrow h2$
0	0	1	0	0	0	1	-2	h3 - 2h4 → h3
0	0	0	1	σ	0	0	1	$h4 \rightarrow h4$
1	3	0	0	1	0	5	-17	$h1 + 5h2 \rightarrow h1$
0	1	0	0	0	1	-2	7	$h2 - 2h2 \rightarrow h2$
0	0	1	0	0	0	1	-2	$h3 \rightarrow h3$
0	0	0	1	0	0	0	1	$h4 \rightarrow h4$
1	0	0	0	1	-3	11	-38	$h1 - 3h2 \rightarrow h1$
0	1	0	0	0	1	-2	7	$h2 \rightarrow h2$
0	0	1	0	0	0	1	- 2	$h3 \rightarrow h3$
0	0	0	1	0	0	0	. 1	$h4 \rightarrow h4$
A 1			~ ~ ~ ~	~ ~		-		

www.VNMATH.com

000

Vậy		$A^{-1} =$	[1 → 0 0 0 0	3 11 1 -2 0 1 0 0	38 7 2 1	
3.25.	1)		L		_	· .
	2 3	-1 · 1	1 0	0 1		h1 h2
_	1 3	-0,5 1	0,5 0	0. 1	-	$ \begin{array}{c} h1/2 \rightarrow h1 \\ h2 \rightarrow h2 \end{array} $
	1	-0,5 2,5	0,5 -1,5	0 1		$ \begin{array}{c} h1 \rightarrow h1 \\ h2 - 3h1 \rightarrow h2 \end{array} $
	1	-0,5 1	0,5 -0,6	0 0,4		$ \begin{array}{c} h1 \rightarrow h1 \\ h2/2,5 \rightarrow h2 \end{array} $
	1	0 1	0,2 0,6	0,2 0,4		$ \begin{array}{r} h1 + 0.5h2 \rightarrow h1 \\ h2 \rightarrow h2 \end{array} $
Do đó 2)	,	A	- ¹ ≠	0,2 - 0,6	0,2 0,4	•
1 -1 2	- 1 2 -3		1 0 0	0 1 0	0 0 1	h1 h2 h3
1 0 0	-1 1 -1	2 3 -2	1 1 -2	0 1 0	0 0 1	$h1 \rightarrow h1$ $h2 + h1 \rightarrow h2$ $h3 - 2h1 \rightarrow h3$
1	-1 1	2 3 1	1 1 -1	0 1 1	0 0 1	$ \begin{array}{c} h1 \rightarrow h1 \\ h2 \rightarrow h2 \\ h3 + h2 \rightarrow h3 \end{array} $
1	-1 1	0 0 1	3 4 -1	-2 -2 1	-2 -3 1	$ \begin{array}{r} h1 - 2h3 \rightarrow h1 \\ h2 - 3h3 \rightarrow h3 \\ h1 \rightarrow h \end{array} $
1	0	0	7 4	-4 -2 1	-5 -3 1	$ \begin{array}{r} h1 + h2 \rightarrow h1 \\ h2 \rightarrow h2 \\ h3 \rightarrow h3 \end{array} $

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 8-BT.TCC.T1 1

×

Do đó

	•	4	· A	⁻¹ =	「7 4 -1	-4 - -2 - 1	5 3 1
3)			. •		L	۲	J .
	1	1	2	1	0	0	h 1
	2	3	2	0	1	0	h2
	1	3	-1	0	0	1	h3
_	1 .	1	2	1	0	0	$h1 \rightarrow h1$
	0	1	-2	-2	1	0	$h2 - 2h1 \rightarrow h2$
	0	2	-3	-1	0	1	$h3 - h1 \rightarrow h3$
	1	1	2	1	0	0	$h1 \rightarrow h1$
		1	-2	-2	1	0	$h2 \rightarrow h2$
			1	3	-2	1	$h3 - 2h2 \rightarrow h3$
	1	1	0	-5	4	-2	$h1 - 2h3 \rightarrow h1$
		1	0	4	-3	2	$h2 + 2h3 \rightarrow h2$
			1	3	-2	1	h3 → h3
	1	0	0	-9	7	-1	$h1 - h2 \rightarrow h1$
		1	0	4	-3	2	$h2 \rightarrow h2$
			1	3	-2	1	h3 → h3

Do đó

$$A^{-1} = \begin{bmatrix} -9 & 7 & -4 \\ 4 & -3 & 2 \\ 3 & -2 & 1 \end{bmatrix}.$$

 $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

det(A) = 0, A không có nghịch đảo. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

2	3	1	0	h1
1	4	0	1	h2
1	3/2	1/2	0	$h1/2 \rightarrow h1$
1	4	0	1	$h2 \rightarrow h2$
1	3/2	1/2	0	h1 → h1
0	5/2	-1/2	1	$h2 - h1 \rightarrow h2$
1	3/2	1/2	0	h1 -+ h1
	1	-1/5	2/5	$h2/(5/2) \rightarrow h2$
1	0	4/5	-3/5	$h1 - 3/2h2 \rightarrow h1$
	1	-1/5	2/5	$h2 \rightarrow h2$

Do đó

$$A^{-1} = \begin{bmatrix} 4/5 & -3/5 \\ -1/5 & 2/5 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -3 \\ -6 & 9 \end{bmatrix}$$

Ta có

$$\det(A) = \begin{vmatrix} 2 & -3 \\ -6 & 9 \end{vmatrix} = 0$$

Do đó ma trận A không có nghịch đảo 7)

	1	-1	-1	1	0	0	h1
	-1	+1	-1	0	1.	0 (h2
	2	2	0	0	0	1	h 3
-	· · · · · -						
	1	-1	-1	1	0	0	h1 → h1
	1 0	-1 0	-	1 1		-	

1	-1	-1	1	0	0	$h1 \rightarrow h1$
	4	2	-2	-0	1	$h3 \rightarrow h2$
		-2	1	1	0	$h2 \rightarrow h3$
1	-1	-1	1	0	0	$h1 \rightarrow h1$
	1	0,5	-0,5	້0	0,25	$h2/4 \rightarrow h2$
	,	1	-0,5	~0,5	0	$h3/(-2) \rightarrow h3$
1	-1	0	0,5	-0,5	0	$h1 + h3 \rightarrow h3$
	1	0	-0,25	0,25	0,25	$h2 - 0.5h1 \rightarrow h2$
		1	-0,5	-0,5	0	$h3 \rightarrow h3$
1	0	0	0,25	-0,25	0,25	$h1 + h2 \rightarrow h1$
	1	0	-0,25	0,25	0,25	$h2 \rightarrow h2$
		1	-0,5	~0,5	0	h3 → h3
			<u>г</u>	1 / 4	1/4	14]
Do d	ta:	4-1		1/4 1/4 1/2	· 1/4	1/4
DO-C	10	A		1/4 1/0	1/4	1/4
				1/2 -		
			Ľ-	1,0	1/4	٥
8) [,]			ſ_	1,2	1,2	٩ ٦ .
8) [,] 2:	1	ſ	[- 1			J ,
	1 2	ſ	1	0	0	ь.
2			-			J ,
2: 1	2	1 1	1 0	0 1	0 0	h1 h2 h3
2: 1 1	2 1	1 1 2	1 0 0	0 1 0	0 0 1 0	$h1$ $h2$ $h3$ $h1/2 \rightarrow h1$
2 1 1 1	2 1 1/2	1 1 2 1/2	1 0 0 1/2	0 1 0 0	0 0 1	h1 h2 h3
2: 1 1 1	2 1 1/2 2	1 1 2 1/2 1	1 0 0 1/2 0	0 1 0 0 1	0 0 1 0	h1 h2 h3 h1/2 \rightarrow h1 h2 \rightarrow h2
2: 1 1 1 1 1	2 1 1/2 2 1	1 1 2 1/2 1 2	1 0 0 1/2 0 0	0 1 0 1 0	0 0 1 0 1	h1 h2 h3 h1/2 \rightarrow h1 h2 \rightarrow h2 h3 \rightarrow h3 h1 \rightarrow h1
2 1 1 1 1 1 1 1	2 1 1/2 2 1 1/2	1 1 2 1/2 1 2 1/2	1 0 1/2 0 0 1/2	0 1 0 1 0 0	0 0 1 0 1 1	h1 h2 h3 h1/2 \rightarrow h1 h2 \rightarrow h2 h3 \rightarrow h3
2 1 1 1 1 1 1 1	2 1 1/2 2 1 1/2 3/2	1 1 2 1/2 1 2 1/2 1/2 1/2	$ \begin{array}{r} 1 \\ 0 \\ 0 \\ \hline 0 \\ \hline 1/2 \\ -1/2 \end{array} $	0 1 0 1 0 1 0 1	0 0 1 0 0 1	h1 h2 h3 h1/2 \rightarrow h1 h2 \rightarrow h2 h3 \rightarrow h3 h1 \rightarrow h1 h2 $-$ h1 \rightarrow h2
2: 1 1 1 1 1 1 0	2 1 1/2 2 1 1/2 3/2 1/2	1 1/2 1/2 1 2 1/2 1/2 3/2	$ \begin{array}{c} 1 \\ 0 \\ 1/2 \\ 0 \\ 1/2 \\ -1/2 \\ -1/2 \\ -1/2 \end{array} $	0 1 0 1 0 1 0 1 0	0 0 1 0 0 1 0 0 1	h1 h2 h3 h1/2 \rightarrow h1 h2 \rightarrow h2 h3 \rightarrow h3 h1 \rightarrow h1 h2 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h3
2: 1 1 1 1 1 1 0	2 1 1/2 2 1 1/2 3/2 1/2 1/2	1 1/2 1/2 1/2 1/2 1/2 3/2 1/2	$ \begin{array}{c} 1 \\ 0 \\ 1/2 \\ 0 \\ -1/2 \\ -1/2 \\ -1/2 \\ 1/2 \end{array} $	0 1 0 1 0 1 0 1 0 1 0	0 0 1 0 0 1 0 0 1 0	h1 h2 h3 h1/2 \rightarrow h1 h2 \rightarrow h2 h3 \rightarrow h3 h1 \rightarrow h1 h2 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h3 h1 \rightarrow h1
2: 1 1 1 1 1 1 0	2 1 1/2 2 1 1/2 3/2 1/2 1/2 1	1 1/2 1/2 1/2 1/2 1/2 3/2 1/2 1/3	$ \begin{array}{c} 1\\ 0\\ 0\\ \hline 1/2\\ 0\\ 0\\ \hline 1/2\\ -1/2\\ \hline 1/2\\ \hline 1/2\\ -1/3\\ \end{array} $	0 1 0 1 0 1 0 1 0 2/3	0 0 1 0 0 1 0 0 1 0 0 0	h1 h2 h3 h1/2 \rightarrow h1 h2 \rightarrow h2 h3 \rightarrow h3 h1 \rightarrow h1 h2 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h3 h1 \rightarrow h1 h2 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h3
2: 1 1 1 1 1 1 0 1	2 1 1/2 2 1 1/2 3/2 1/2 1/2 1 1	1 1/2 1/2 1/2 1/2 1/2 3/2 1/2 1/3 3	$ \begin{array}{c} 1\\ 0\\ 0\\ 1/2\\ 0\\ 0\\ 1/2\\ -1/2\\ -1/2\\ 1/2\\ -1/3\\ -1\\ \end{array} $	0 1 0 1 0 1 0 1 0 2/3 0 0	0 0 1 0 0 1 0 0 1 0 0 2	h1 h2 h3 h1/2 \rightarrow h1 h2 \rightarrow h2 h3 \rightarrow h3 h1 \rightarrow h1 h2 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h2 h3 $-$ h1 \rightarrow h3 h1 \rightarrow h1 h2/(3/2) \rightarrow h2 h3/(1/2) \rightarrow h3

www.VNMATH.com

1	1/2	1/2	1/2	0	0	$h1 \rightarrow h1$
-	1				0	$h2 \rightarrow h2$
	-				3/4	$h3/(8/3) \rightarrow h3$
1	1/2	0	5/8	1/8 -3	3/8	$h1 - 0.5h3 \rightarrow h1$
	1	0	-1/4	3/4 -	1/4	h2 - 1/3h3 → h2
•,		1	-1/4 -	-1/4		$h3 \rightarrow h3$
1	0	0	3/4 -	-1/4 -	1/4	$h1 - 1/2h2 \rightarrow h1$
	1	0	-1/4	3/4 -	1/4	$h2 \rightarrow h2$
		1	-1/4 -	-1/4	3/4	h3, → h3
Do đ	ó					
			F 9/4	_1/4	_1//]	
		A-1 -	1/4	3/4	_1/4	
		А -	$= \begin{bmatrix} 3/4 \\ -1/4 \\ -1/4 \end{bmatrix}$	-1/4	3/4	
0)			L	1, 1	<u> </u>	
9)						
3	2	0	1	0	0	h1
2	1	3	0	1	0	h2
4	-2	-1	0	0	1	h3
1	2/3	0	1/3	0	0	$h1/3 \rightarrow h1$
2	1	3	0	1	0	$h2 \rightarrow h2$
4	-2	-1	0	0	1	$h3 \rightarrow h3$
1.	2/3	0	1/3*	0	0	$h1 \rightarrow h1$
0	-1/3	3	-2/3	1	0	$h2 - 2h1 \rightarrow h2$
0	-14/3	-1	-4/3	0	1	$h3 - 4h1 \rightarrow h3$
1	2/3	0	1/3	0	0	$h1 \rightarrow h1$
	1	-9	2	-3	0	$h2(-3) \rightarrow h2$
	0	129/14	-12/7	3	-3/14	$h3 - 14h2 \rightarrow h3$
1	2/3	0	1/3	0	0.	$h1 \rightarrow h1$
	1	-9	2	3	0	$h2 \rightarrow h2$
		1	-8/43	14/43	-1/43	h3 $\left(\frac{14}{129}\right) \rightarrow$ h3

8.00 A

1		2/3	0	1/3		0	0	$h1 \rightarrow h1$
		1	0	14/4:	3 -	3/43	-9/43	$h2 - 9h3 \rightarrow h3$
			´ 1	-8/43	31	4/43	-1/43	$h3 \rightarrow h3$
1		0	0	5/43	3	2/43	6/43	$h1 - 2/3h2 \rightarrow h1$
		1	0	14/43	3 -	3/43	-9/43	$h2 \rightarrow h2$
			1	-8/43	3 1	4/43	-1/43	$h3 \rightarrow h3$
				5	/43	2/43	6/43	
Do	đó		A^{-1}	= 14	/43	-3/43	9/45	
				$= \begin{bmatrix} 5/\\ 14/\\ -8/ \end{bmatrix}$	43	14/43	-1/43	3
10)			L				J ,
1	-2	. 1	-1	1	0	0	0	h1
-1	4	-2	3	Ō	1	Ő	ŏ	h1 h2
2	0	1	3	0	ō	1	õ	h3 ·
-2	6	0	5	Õ	õ	0	1	h5 h4
1	-2	. 1	-1	1	0	0	0	$h1 \rightarrow h1$
0	2	-1	2	1	1	. 0	0	$h2 + h1 \rightarrow h2$
0	4	-1	5	-2	0	1	0	$h3 - 2h1 \rightarrow h3$
0	2	2	- 3	2	0	0	1	$h4 + 2h1 \rightarrow h4$
I	-2	1	-1	1	0	0	-0	$h1 \rightarrow h1$
	1	-1/2	1	1/2	1/2	0	0	$h2/2 \rightarrow h2$
	4	-1	5	-2	0	1	0	h3 🛶 h3
	2	2	3	2	0	0	1	h4 → h4
1	-2	1	-1	1	0	0	0	$h1 \rightarrow h1$
	ŀ	-1/2	1	1/2	1/2	0	0	h2 → h2
	0	1	1	-4	-2	1	0	$h3 - 4h2 \rightarrow h3$
	0	3	1	1	-1	0	1	$h4 - 2h2 \rightarrow h4$
1	-2	1	-1	1	0	0	0	$h1 \rightarrow h1$
	1	-1/2	1	1/2	1/2	0	0	$h2 \rightarrow h2$
		1	1	-4	-2	1	0	$h3 \rightarrow h3$
		0	-2	13	5	3	1	$h4 - 3h3 \rightarrow h4$

www.VNMATH.com

.

	1	-2	1	-1		1	0	0	0	$h1 \rightarrow h1$
		1	-1/2	: 1		1/2	1/2	0	0	$h2 \rightarrow h2$
			1	1	ļ	-4	-2	1	0	h3 🛥 h3
				1		-13/2	-5/2	3/2	-1/2	$h4/(-2) \rightarrow h4$
	1	-2	1	0		-11/2	-5/2	3/2	-1/2	$h1 + h4 \rightarrow h1$
		1	~1/2	t 0		7	3	-3/2	1/2	$h2 - h4 \rightarrow h2$
			1	0		+5/2	1/2	-1/2	1/2	h3 – h4 → h3
				1	•	-13/2	-5/2	3/2	-1/2	$h4 \rightarrow h4$
	1	-2	0	0		-8	-3	2	-1	$h1 - h2 \rightarrow h1$
		. 1	0:	0		33/4	13/4	-7/4	3/4	$h2 + 1/2h3 \rightarrow h2$
			1	0		5/2	1/2	-1/2	1/ 2	h3 🛶 h3
			•	• 1		-13/2	-5/2	3/2	-1/2	$h4 \rightarrow h4$
	1	0	0	Ò		17/2	7/2	-3/2	1/2	$h1 + 2h2 \rightarrow h1$
		1	0	0		33/4	13/4	-7/4	3/4	$h2 \rightarrow h2$
			1	0		5/2	1/2	-1/2	1/2	$h3 \rightarrow h3$
				1		-13/2	-5/2	3/2 ·	-1/2	h4 → h4
; —						17/2	7/2	-3/2	1/2	
	~	• •		4 −1		17/2 33/4 5/2 -13/2	13/4	-7/4	3/4	
	D	o đó		A ·	=	5/2	1/2	-1/2	1/2	
						-13/2	-5/2	3/2	-1/2	
	11	.)				L			1	
	2	_	1	0	3	1	0	0	0	h1
	1			2	-1	0	1	0	0	h2
	-1			3	1	0	0	1	0	h3
	0			2	1	· 0	0	0	1	h4
	1		1	2	-1	0	1	0 .	0	$h2 \rightarrow h1$
	-1		2	3	1	0	0	1	0	$h3 \rightarrow h2$
	0			2	1	0	0	0	1	h4 → h3
	2	_		0	3	1	0	0	0	$h1 \rightarrow h4$
-	1		1	2	-1	0	1	0	0	$h1 \rightarrow h1$
	0		3	5	0	0	1	1	0	$h2 + h1 \rightarrow h2$
	0		1	2	1	0	0	0	1	$h3 \rightarrow h3$
	0	-	3 ·	-4	5	1	-2	0	0	$h4 - 2h1 \rightarrow h4$
1	dov	whic	aher	4 60	203	R ndf at	t Tue	lul 31	08.30	19 ICT 2012

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 119

1

1	1 1 1	2 5/3	-1 0	0	1	0	0	h1+ h1
			0					
	1			0	1/3	1/3	0	$h2/3 \rightarrow h2$
	~	2	1	0	0 ·	0	1	$h3 \rightarrow h3$
-	-3	-4	5	1	-2	0	0	h4 → h4
1	1	2	-1	0	1	0	0	$h1 \rightarrow h1$
	1	5/3	0	0	1/3	1/3	0	$h2 \rightarrow h2$
	0	1/3	1	0	-1/3	-1/3	· 1	$h3 - h2 \rightarrow h2$
·	0	_ 1	5	1	-1	1	0	$h4 + 3h2 \rightarrow h4$
1	1	2	-1	0	1	0	0	$h1 \rightarrow h1$
	1	5/3	0	0	1/3	1/3	0	$h2 \rightarrow h2$
		1	3	0	1	-1	3	3h3 → h3
		1	5	1	-1	1	0	$h4 \rightarrow h4$
1	1	2	-1	0	1	0	0	h1 h1
	1	5/3	0	0	1/3	1/3	0	$h2 \rightarrow h2$
		1	3	0	-1	-1	3	h3 🛶 h3
		0	2	1	0	2	-3	h4 - h3 → h4
1	1	2	· -1	0	1	0	0	$h1 \rightarrow h1$
	1.	5/3	0	0	1/3	1/3	0	h2 → h2
		1	3	0	-1	-1	3	h3 → h3
	_		1	1/2	0	1	-3/2	$h4/2 \rightarrow h4$
1	1	2	0	1/2	1	1	-3/2	$h1 + h4 \rightarrow h1$
	1	5/3	0	0	1/3	1/3	0	$h2 \rightarrow h2$
		1	0	~3/2	-1	-4	15/2	$h3 - 3h4 \rightarrow h3$
			1	1/2	0	1	-3/2	h4 → h4
1	1	0	0	7/2	3	9	-33/2	$h1 - 2h3 \rightarrow h1$
	1	0	0	5/2	2	7	-25/2	$h2 - 5/3 h3 \rightarrow h2$
		1	0	~3/2	-1	-4	15/2	$h3 \rightarrow h3$
			1	1/2	0	1	-3/2	h4 → h4
1	0	0	0	1	1	2	-4	$h1 - h2 \rightarrow h1$
	1	0	0	5/2	2	7	-25/2	$h2 \rightarrow h2$
		1	0	-3/2	-1	-4	15/2	$h3 \rightarrow h3$
			1	1/2	0	1	-3/2	h4 → h4

Do đo

9.9. 8,9,9

$$A^{-1} = \begin{bmatrix} 1 & 1 & 2 & -4 \\ 5/2 & 2 & 7 & -25/2 \\ -3/2 & -1 & -4 & 15/2 \\ 1/2 & 0 & 1 & -3/2 \end{bmatrix}$$

3.26. Vì $a_{11}a_{22} \dots a_{nn} \neq 0$ nên $a_{ii} \neq 0 \forall i$ Ma trân

$$B = \begin{bmatrix} \frac{1}{a_{11}} & \frac{1}{a_{22}} & \\ & & \frac{1}{a_{nn}} \end{bmatrix}$$

có đặc tính : BA = I, AB = I

Vậy $B = A^{-1}$. 3.27. Từ $A^2 - 3A + I = 0$ ta suy ra

$$I = 3A - A^2 = A(3I - A) = (3I - A)A$$

Vây 3I - A = A⁻¹.

3.28. Ta phải chứng minh rằng nếu $B \neq 0$ thì A không thể khả đảo. Thật vậy, giả sử $B \neq 0$ mà tồn tại A^{-1} . Nhân A^{-1} với 2 vế của AB = 0 ta suy ra

$$A^{-1}(AB) = A^{-1}(AB) = 0$$
$$(A^{-1}A)B = 0$$
$$B = 0$$

Diếu này trái giả thiết $B \neq 0$. **3.29.** Nhân A^{-1} với 2 vế của đẳng thức AB = AC $A^{-1}(AB) = A^{-1}(AC)$ $(A^{-1}A)B = (A^{-1}A)C$ B = C **3.30.** 1) det $(A^2) = det(AA) = det(A)det(A) = 3.3 = 9$; $det(A^3) = det(A^2A) = det(A^2)det(A) = 9.3 = 27$.

2)

$$AA^{-1} = I$$

 $det(AA^{-1}) = det(I) = 1$ $det(A)det(A^{-1}) = 1$

$$\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{4}$$

3)

 $det(B^2) = det(A)$ det(BB) = det(A) det(B)det(B) = det(A) $det(B) = \pm \sqrt{det(A)} = \pm \sqrt{5},$

tức là

$$det(B) = \sqrt{5} hay - \sqrt{5}$$
4) $det(A^{t}A) = det(A^{t})det(A)$
 $= det(A)det(A) = 10^{2} = 100.$
3.31. 1) $A = \begin{bmatrix} 2 & -1 \\ 3 & 3 \end{bmatrix}$
 $det(A) = \begin{vmatrix} 2 & -1 \\ 3 & 3 \end{vmatrix} = 6 + 3 = 9 \neq 0$

Vậy A khả đảo :

$$A^{-1} = \frac{1}{9} \begin{bmatrix} 3 & 1 \\ -3 & 2 \end{bmatrix}$$
2)
$$A = \begin{bmatrix} -1 & 2 \\ 3 & -6 \end{bmatrix}$$

$$\det(A) = \begin{vmatrix} -1 & 2 \\ 3 & -6 \end{vmatrix} = 0.$$

Ma trận A không có nghịch đảo.

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ 2 & 1 & 1 \end{bmatrix}$$

 $det(A) = 4 \neq 0$. Ma trận A có nghịch đảo

$$A^{-1} = \frac{1}{4} \begin{bmatrix} -2 & -2 & 4\\ 6 & 4 & -6\\ -2 & 0 & 2 \end{bmatrix}$$

4)
$$A = \begin{bmatrix} 1 & -1 & 2\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{bmatrix}$$

 $det(A) = 1 \neq 0$. Ma trận À có nghịch đảo

5)
$$A^{-1} = \begin{bmatrix} 1 & 1 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 4 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

$$\det(A) = 14 \neq 0$$

Ma trận A có nghịch đảo

$$A^{-1} = \frac{1}{14} \begin{bmatrix} -2 & -8 & 4\\ 5 & -1 & -3\\ -2 & 6 & 4 \end{bmatrix}$$

3.4. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

3.32.

. .

1)
$$\Delta = \begin{vmatrix} 2 & 5 \\ 4 & 5 \end{vmatrix} = 2.5 - 4.5 = -10 \neq 0$$

 \Rightarrow hệ có nghiệm duy nhất :
 $x = \frac{\begin{vmatrix} 1 & 5 \\ -5 & 5 \end{vmatrix}}{\Delta} = \frac{5 + 25}{-10} = -3$
 $y = \frac{\begin{vmatrix} 2 & 1 \\ 4 & -5 \end{vmatrix}}{\Delta} = \frac{-10 - 4}{-10} = 7/5$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

123

 $2) \Delta = \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -3 \neq 0$ ➡ hệ có nghiệm duy nhất : $x = \frac{\begin{vmatrix} 4 & 2 \\ 3 & 1 \end{vmatrix}}{A} = \frac{-2}{-3} = \frac{2}{3}$ $y = \frac{\begin{vmatrix} 1 & 4 \\ 2 & 3 \end{vmatrix}}{A} = \frac{-5}{-2} = 5/3.$ 3) $\Delta \approx \begin{vmatrix} 2 & -2 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = 1 \neq 0$ ⇒ hệ có nghiệm duy nhất : $x = \frac{\begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \end{vmatrix}}{x} = \frac{2}{1} = 2$ $y = \frac{\begin{vmatrix} 2 & -1 & -1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{vmatrix}}{\begin{vmatrix} -1 & -1 & 1 \\ -1 & -1 \end{vmatrix}} = \frac{4}{1} = 4$ $z = \frac{\begin{vmatrix} 2 & -2 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{vmatrix}}{A} = \frac{-3}{A} = -3$ 4) $\Delta = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & 2 \end{vmatrix} = 1 \neq 0$ ⇒ hệ có nghiệm duy nhất : $x = \frac{\begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 2 \end{vmatrix}}{A} = \frac{7}{1} = 7$

www.VNMATH.com

$$y = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 0 & 2 \end{vmatrix}}{\Delta} = \frac{-3}{1} = -3$$

$$z = \frac{\begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 0 \end{vmatrix}}{\Delta} = \frac{-9}{1} = -9.$$
5)
$$\Delta = \begin{vmatrix} 2 & -1 & -1 \\ 3 & 4 & -2 \\ 3 & -2 & 4 \end{vmatrix} = 60 \neq 0$$

$$\Rightarrow he co nghiem duy nhất :$$

$$x = \frac{\begin{vmatrix} 4 & -1 & -1 \\ 11 & 4 & -2 \\ 11 & -2 & 4 \end{vmatrix}}{\Delta} = \frac{180}{60} = 3$$

$$y = \frac{\begin{vmatrix} 2 & 4 & -1 \\ 11 & 4 & -2 \\ 11 & -2 & 4 \\ -\Delta & -2 & -1 \\ -\Delta & -2 & -2 \\ -\Delta &$$

$$y = \frac{\begin{vmatrix} 3 & 5 & 1 \\ 2 & 11 & 3 \\ 2 & 11 & 3 \end{vmatrix}}{\Delta} = \frac{-24}{12} = -2$$

$$z = \frac{\begin{vmatrix} 3 & 2 & 5 \\ 2 & 3 & 1 \\ 2 & 1 & 11 \end{vmatrix}}{\Delta} = \frac{36}{12} = 3$$

$$z = \begin{vmatrix} 1 & 2 & 3 & -2 \\ 2 & -1 & -2 & -3 \\ 3 & 2 & -1 & 2 \\ 2 & -3 & 2 & 1 \end{vmatrix} = 324 \neq 0$$

$$\Rightarrow he co nghiem duy nhat$$

$$x = \frac{\begin{vmatrix} 6 & 2 & 3 & -2 \\ 8 & -1 & -2 & -3 \\ 4 & 2 & -1 & 2 \\ -8 & -3 & 2 & 1 \end{vmatrix}}{\Delta} = \frac{324}{324} = 1$$

$$y = \frac{\begin{vmatrix} 1 & 6 & 3 & -2 \\ 8 & -1 & -2 & -3 \\ 4 & 2 & -1 & 2 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & -3 \\ -8 & -3 & 2 & 1 \\ -8 & -3 & 2 & -3 \\ z = \frac{\begin{vmatrix} 1 & 2 & 6 & -2 \\ 2 & -3 & -8 & 1 \\ -2 & -3 & -8 & 1 \\ -3 & 2 & -3 & -3 \\ -3 & 2 & -3 & -3 \\ -3 & 2 & -3 \\ -3 & 2 & -3 \\ -3 & 2 & -3 \\ -3 & 2 & -3 \\ -3 & 2 & -3 \\ -3 & 2 & -3 \\ -3 & 2 & -3 \\ -5 & -2 & -2 \\ -5 & -2 & -3 \\ -5 & -2 & -2 \\ -5 & -2 & -2 \\ -5 & -2 & -2 \\ -5 & -2 & -2 \\ -5 & -2 & -2$$

6

127.0.0₁₂₆downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

8)
$$\Delta = \begin{vmatrix} 0 & 1 & -3 & 4 \\ 1 & 0 & -2 & 3 \\ 3 & 2 & 0 & -5 \\ 4 & 3 & -5 & 0 \end{vmatrix} = 24 \neq 0$$

$$\Rightarrow \text{ he co nghiem duy nhất :}$$

$$x_{1} = \frac{\begin{vmatrix} -5 & 1 & -3 & 4 \\ -4 & 0 & -2 & 3 \\ 12 & 2 & 0 & -5 \\ 5 & 3 & -5 & 0 \end{vmatrix}}{\Delta} = \frac{24}{24} = 1$$

$$x_{2} = \frac{\begin{vmatrix} 0 & 5 & -3 & 4 \\ 1 & -4 & -2 & 3 \\ 3 & 12 & 0 & -5 \\ 4 & 5 & -5 & 0 \end{vmatrix}}{\Delta} = \frac{48}{24} = 2$$

$$x_{3} = \frac{\begin{vmatrix} 0 & 1 & -5 & 4 \\ 1 & 0 & -4 & 3 \\ 3 & 2 & 12 & -5 \\ 4 & 3 & 5 & 0 \end{vmatrix}}{\Delta} = \frac{24}{24} = 1$$

$$x_{3} = \frac{\begin{vmatrix} 0 & 1 & -5 & 4 \\ 1 & 0 & -4 & 3 \\ 3 & 2 & 12 & -5 \\ 4 & 3 & 5 & 0 \end{vmatrix}}{\Delta} = \frac{24}{24} = 1$$

$$x_{4} = \frac{\begin{vmatrix} 0 & 1 & -3 & -5 \\ 1 & 0 & -2 & -4 \\ 3 & 2 & 0 & 12 \\ 4 & 3 & -5 & 5 \end{vmatrix}}{\Delta} = \frac{-24}{24} = -1.$$

3.33. 1) Không đúng vì định lí Cramer chỉ khẳng định rằng nếu $det(A) \neq 0$ thì hệ Ax = b có nghiệm duy nhất, không nói đến trường hợp det(A) = 0. Mặt khác hệ

$$2x - 3y = 8$$
$$4x - 6y = 16$$

có định thức

\$

$$\begin{vmatrix} 2 & -3 \\ 4 & -6 \end{vmatrix} = 0$$

nhưng lại có vô số nghiệm :

y tùy ý
$$x = (8 + 3y)/2.$$

2) Đúng vì nếu det(A) \neq 0 thì theo định lí Cramer hệ AX = 0 có nghiệm duy nhất ; nó đã có nghiệm tâm thường nên không thể có nghiệm không tẩm thường. Do đó det(A) phải bằng không.

3.34. a) Đặt

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{y}_1 \\ \boldsymbol{x}_2 & \boldsymbol{y}_2 \end{bmatrix}$$

thì hệ

$$AX = \begin{bmatrix} 4 & -6 \\ 2 & 1 \end{bmatrix}$$

tách thành 2 hệ

$$A\begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 4\\ 2 \end{bmatrix}, \quad A\begin{bmatrix} y_1\\ y_2 \end{bmatrix} = \begin{bmatrix} -6\\ 1 \end{bmatrix}$$

có chung ma trận hệ số

$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

Ta có thể áp dụng phương pháp Gauss để giải hai hệ đó đồng thời

2	5	4	~6
1	3	2	1
1	5/2	2	-3
1	3	2	1
1	5/2	2	-3
0	1/2	0	4
1	5/2	2	-3
	1	0	8
1	0	2	-23
	1	0	8

Jo do

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -23 \\ -23 \\ 0 \end{bmatrix}$$
nghĩa là

$$X = \begin{bmatrix} 2 & -23 \\ 0 & 8 \end{bmatrix}$$
b) Tim X đế

$$X \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5 \end{bmatrix}$$
tức là

$$XA = B$$
Ta có

$$(XA)^i = B^i$$
Dặt $X^i = Y$ ta có $A^iY = B^i$, tức là

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix} Y = \begin{bmatrix} 1 & 4 & 1 \\ -1 & 3 & -2 \\ 3 & 2 & 5 \end{bmatrix}$$
Áp dụng cách làm ở bài a) ta được

$$\frac{1 & 2 & 1 & 1 & 4 & 1 \\ 1 & 1 & -1 & -1 & 3 & -2 \\ -1 & 0 & 1 \end{bmatrix} Y = \begin{bmatrix} 1 & 4 & 1 \\ -1 & 3 & -2 \\ 3 & 2 & 5 \end{bmatrix}$$
Áp dụng cách làm ở bài a) ta được

$$\frac{1 & 2 & 1 & 1 & 4 & 1 \\ 1 & 1 & -1 & -1 & 3 & -2 \\ -1 & 0 & 1 & 3 & 2 & 5 \\ \hline 1 & 2 & 1 & 1 & 4 & 1 \\ 0 & 1 & -2 & -2 & -1 & -3 \\ 0 & 2 & 2 & 4 & 6 & 6 \\ \hline 1 & 2 & 1 & 1 & 4 & 1 \\ 1 & 2 & 3 & 3 \\ \hline 1 & 2 & 1 & 1 & 4 & 1 \\ 1 & 2 & 2 & 1 & 3 \\ \hline 1 & 2 & 1 & 1 & 4 & 1 \\ 1 & 2 & 2 & 1 & 3 \\ \hline 1 & 2 & 1 & 1 & 4 & 1 \\ 1 & 2 & 2 & 1 & 3 \\ \hline 1 & 2 & 1 & 1 & 4 & 1 \\ \hline 1 & 2 & 2 & 1 & 3 \\ \hline 1 & 2 & 3 & 3 \\ \hline 1 & 2 & 1 & 1 & 4 \\ \hline 1 & 2 & 1 & 1 & 4 \\ \hline 1 & 1 & 2 & 1 \\ \hline 1 & 1 & 1 & 2 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 9-вт.тсс.т1

129

.....

1 2 2 3 0 -2 0 0 -2 -3 -5 -2

Vậy

	[-3	-4	5]
Y =	2	5	-5 3 0
	0	-2	0
	L		7

Do đó

$$X = Y^{t} = \begin{bmatrix} -3 & 2 & 0 \\ -4 & 5 & -2 \\ -5 & 3 & 0 \end{bmatrix}$$

3.35. 1)
$$A = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$$

 $det(A) = \begin{vmatrix} 3 & 4 \\ 4 & 5 \end{vmatrix} = -1 \neq 0$
 $A^{-1} = \frac{1}{-1} \begin{bmatrix} 5 & -4 \\ -4 & 3 \end{bmatrix}$
 $\begin{bmatrix} x \\ y \end{bmatrix} \neq A^{-1} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$
2) $A = \begin{bmatrix} -3 & 2 \\ 2 & 4 \end{bmatrix} \Rightarrow det(A) = \begin{bmatrix} -3 & 2 \\ 2 & 4 \end{vmatrix} = -16 \neq 0$
 $A^{-1} = \frac{1}{-16} \begin{bmatrix} 4 & -2 \\ -2 & -3 \end{bmatrix}$

$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ -6 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} -4 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -6 \end{bmatrix}$$
$$= \frac{1}{16} \begin{bmatrix} -16 \\ -16 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
3) $A = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$
$$\det(A) = \begin{vmatrix} 3 & 4 \\ 4 & 5 \end{vmatrix} = -1 \neq 0$$
$$A^{-1} = \frac{1}{-1} \begin{bmatrix} 5 & -4 \\ -4 & 3 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ 4 & -3 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ 6 \end{bmatrix}$$
4) $A = \begin{bmatrix} -3 & 2 \\ 2 & -4 \end{bmatrix}$
$$\det(A) = \begin{vmatrix} -3 & 2 \\ 2 & -4 \end{bmatrix} = 8 \neq 0$$
$$A^{-1} = \frac{1}{8} \begin{bmatrix} -4 & -2 \\ -2 & -3 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} -6 \\ 1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} -4 & -2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} -6 \\ 1 \end{bmatrix}$$
$$= \frac{1}{8} \begin{bmatrix} 22 \\ 9 \end{bmatrix} = \begin{bmatrix} 22/8 \\ 9/8 \end{bmatrix}$$
3.36. 1) $y = 2$
$$x = \frac{1}{2} (4 - 3y) = \frac{1}{2} (4 - 6) = -1$$
$$2) x_4 = -1$$

ę

 $x_3 = \frac{1}{2}(-1 - 3x_4) = \frac{1}{2}(-1 + 3) = 1$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 131

$$x_{2} = \frac{1}{3}(6 - x_{3} - x_{4}) = \frac{1}{3} \cdot 6 = 2$$

$$x_{1} = \frac{1}{2}(2 - x_{2} + 4x_{3} - 2x_{4}) = \frac{1}{2}(2 - 2 + 4 + 2) = 3$$

1,2	-0,8	2	h1
-1,5	0,25	-4	h2
1,2	-0,8	2	$h1 \rightarrow h1$
	-0,75	-1,5	h2 + 1,5h1 \rightarrow h2

Do đó hệ đã cho tương đương với

 $\begin{cases} 1,2x - 0,8 \ y = 2 \\ - 0,75y = -1,5 \end{cases}$

Ta suy ra

$$y = \frac{-1.5}{-0.75} = 2$$

$$x = \frac{1}{1.2} [2 + 0.8y]$$

$$= \frac{1}{1.2} [2 + 0.8.2] = \frac{3.6}{1.2} = 3$$

$$x = 3, \quad y = 2$$

2)

1	1	1	1	h1
1	2	3	-1	h2
1	4	9	-9	h3
1	1	1	1	h1 → h1
	1	2	-2	$h2 - h1 \rightarrow h2$
	3	8	-10	$h3 - h1 \rightarrow h3$
1.	1	1	1	h1 -+ h1
	1	2	-2	$h2 \rightarrow h2$
		2	-4	h3 - 3h2 → h3
			1 .	

www.VNMATH.com

Vậy h	ệ đã cho	tương đ	ương với								
	$\int x + y + z = 1$										
	y + 2z = -2										
	$\begin{cases} x + y + z = 1 \\ y + 2z = -2 \\ 2z = -4 \end{cases}$										
Ta suy	7 ra	·									
	,	$e = \frac{-4}{2} =$	່9								
		_			•						
	-	v = -2 -									
		$\mathfrak{c} = 1 - y$			= 1						
Vậy	و	x = 1, y =	z = 2, z = -	-2 .							
3)											
1	··1	1	-1	2	h1						
1	0	-1		0.	h2						
-1	2	-2	2 7	-7	h3						
2	-1	-1	0	3	h4						
1	-1	1	-1	2	$h1 \rightarrow h1$						
0	1	-2	3	-2	$h2 - h1 \rightarrow h2$						
0	1	-1	6	-5	h3 + h1 → h3						
0	1	-3	2	-1	$h4 - 2h1 \rightarrow h4$						
1	-1	1	-1	2	h1 → h1						
	1	-2	3	-2	$h2 \rightarrow h2$						
	0	1	3	-3	h3 - h2 → h3						
	0	-1	-1	1	$h4 - h2 \rightarrow h4$						
1	-1	1	-1	2	$h1 \rightarrow h1$						
	. 1	-2	3	-2	$h2 \rightarrow h2$						
		1	3	-2 -3	$h3 \rightarrow h3$						
		0	2	-2	$h4 + h3 \rightarrow h4$						
• •											

Hệ đã chỗ tương đương với

$$x_{1} - x_{2} + x_{3} - x_{4} = 2$$

$$x_{2} - 2x_{3} + 3x_{4} = -2$$

$$x_{3} + 3x_{4} = -3$$

$$2x_{4} = -2$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

133

Ta suy ra

		c	$x_4 = \frac{-2}{2}$	- = -1								
	$x_3 = -3 - 3x_4 = -3 + 3 = 0$											
	$x_2 = -2 + 2x_3 - 3x_4 = 1$											
			$x_1^2 = 2 +$									
	43		-1 - 2	-2	3 ' ~4 -	- 4						
	4)											
	1	-1	2	2	- 1	3	h1					
	2	1	5	2	2	6	h2					
	-1	4	0	-6	1	-3 -3	h3					
	-2	-4	-4	-1	1	-3	h4					
	2	4	4	7	-1	9	h5					
	1	-1	2	2	1	3	$h1 \rightarrow h1$					
	0	3	1	_ −2	0	. 0	h2 - 2h1 → h2					
	0	3	2	-4	2	0	$h3 + h1 \rightarrow h3$					
	0	-6	0	3	3	3	$h4 + 2h1 \rightarrow h4$					
	0	6	0	3	-3	3	$h5 - 2h1 \rightarrow h5$,					
	1	-1	2	2	1	3	$h1 \rightarrow h1$					
		3	1	-2 -2	0	0	h2 - h2					
		0	1	_− 2	2	0	$h3 - h2 \rightarrow h3$					
		0	2	-1	3	· 3	$h4 + 2h2 \rightarrow h4$					
_		0	-2	7	-3	3	$h5 - 2h2 \rightarrow h5$					
	1	-1	2	2	1	3	$h1 \rightarrow h1$					
		3	1	-2	0	0	$h2 \rightarrow h2$					
			1	-2	2	0	h3 → h3					
			· 0	3	-1	3	$h4 - 2h3 \rightarrow h4$					
_			0	3	1	3	$h5 + 2h3 \rightarrow h5$					
	1	-1	2	2	1	3	$h1 \rightarrow h1$					
	•	3	1	-2	0	0	h2 -> h2					
			1	-2	2	0	h3 → h3					
			• •	3	-1	3	$h4 \rightarrow h4$					
			-		2	0	$h5 - h4 \rightarrow h5$					
					I							

Vậy hệ đã cho tương đương với $\begin{cases}
x_1 - x_2 + 2x_3 + 2x_4 + x_5 = 3 \\
3x_2 + x_3 - 2x_4 = 0 \\
x_3 - 2x_4 + 2x_5 = 0 \\
3x_4 - x_5 = 3 \\
2x_5 = 0
\end{cases}$

Ta suy ra

$$x_{5} = 0$$

$$x_{4} = 1$$

$$x_{3} = 2$$

$$x_{2} = 0$$

$$x_{1} = -3$$
3.38. 1) $A = \begin{bmatrix} 1 & -2 \\ 3 & a \end{bmatrix}$

$$\det(A) = \begin{vmatrix} 1 & -2 \\ 3 & a \end{vmatrix} = a + 6.$$

Hệ không có nghiệm duy nhất khi

$$\det(A) = a + 6 = 0,$$

tức là khi a = -6

2) Hệ không có nghiệm duy nhất khi

1	-1	2	
1 2 3	a	2 3	= 0
3	3	1	Ì

tức là khi a = -4/5.

3.39. Hai hệ tương đương khi nghiệm của chúng trùng nhau. Th giải hệ thứ nhất : nó có nghiệm duy nhất :

$$\mathbf{x} = \frac{\begin{vmatrix} 1 & 2 \\ 1 & 5 \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix}} = \frac{3}{1} = 3$$

$$y = \frac{\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}}{1} = \frac{-1}{1} = -1$$

Nghiệm này thỏa mãn phương trình thứ hai của hệ thứ hai :

$$-3 + 2(-1) = -5$$

Muốn cho hai hệ tương đương ta cho nghiệm trên thỏa mãn phương trình thứ nhất của hệ thứ hai để tìm α :

$$3 + a(-1) = 4$$

 $a = -1.$

Ta suy ra

3.40. 1) $\Delta = \begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} = -4 \neq 0$

 \Rightarrow hệ có nghiệm duy nhất phụ thuộc a và b :

$$x = \frac{\begin{vmatrix} a & 3 \\ b & 2 \end{vmatrix}}{\Delta} = \frac{2a - 3b}{-4} = -\frac{1}{2}a + \frac{3}{4}b;$$
$$y = \frac{\begin{vmatrix} 1 & a \\ 2 & b \end{vmatrix}}{\Delta} = \frac{b - 2a}{-4} = \frac{1}{2}a - \frac{1}{4}b.$$

2)
$$\Delta = \begin{vmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ 2 & -1 & 2 \end{vmatrix} = 1 \neq 0$$

 \Rightarrow hệ có nghiệm duy nhất phụ thuộc a, b và c :

$$x = \frac{\begin{vmatrix} a & 1 & -1 \\ b & 2 & -2 \\ c & -1 & 2 \end{vmatrix}}{\Delta} = 2a - b$$
$$y = \frac{\begin{vmatrix} 1 & a & -1 \\ 1 & b & -2 \\ 2 & c & 2 \end{vmatrix}}{\Delta} = -6a + 4b + c$$

$$z = \frac{\begin{vmatrix} 1 & 1 & a \\ 1 & 2 & b \\ 2 & -1 & c \end{vmatrix}}{\Delta} = -5a + 3b + c$$

3.41. 1)
$$\Delta = \begin{vmatrix} a & -3 & 1 \\ 2 & 1 & 1 \\ 3 & 2 & -2 \end{vmatrix} = -4a - 20$$

Điều kiện cần và đủ để hệ thuân nhất đã cho có nghiệm không tâm thường là $\Delta = 0$, tức là

$$-4a - 20 = 0 \Rightarrow a = -5$$

2)
$$\Delta = \begin{vmatrix} 1 - a & 2 \\ 2 & 4 - a \end{vmatrix}$$

= $(1 - a)(4 - a) - 4 = a^2 - 5a.$

Điều kiện cần và đủ để hệ thuân nhất đã cho có nghiệm không tầm thường là $\Delta = 0$, tức là

$$a^2 - 5a = 0$$

hay a = 0 và a = 5.

3.5. HẠNG CỦA MA TRẬN -HỆ TUYẾN TÍNH TỔNG QUÁT

3.42. 1) Hệ đã cho là một hệ thuẩn nhất có số ẩn (4) nhiều hơn số phương trình (3) nên có vô số nghiệm và do đó có nghiệm không tẩm thường.

2) Hệ đã cho là một hệ thuẩn nhất có ba phương trình ba ẩn với định thức

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 4 \\ 5 \end{vmatrix} = 5 \neq 0$$

Do đó nó chỉ có nghiệm tẩm thường.

3.43. Để tỉm hạng của ma trận ta áp dụng các phép biến đổi sơ cấp về hàng

a)

2	-1	3	-2	4	h1
4	-2	5	1	7	h2
2	-1	1	8	2	h3
2	-1	3	-2	4	$h1 \rightarrow h1$
0	0	-1	5	-1	$h2 - 2h1 \rightarrow h2$
0	0	-2	10	-2	$h3 = h1 \rightarrow h3$
2	-1	3	-2	4	h1 → h1
		-1	5	-1	$h2 \rightarrow h2$
•.		0	0	0	h3 - 2h2 - h3

Dạng bậc thang này có hai hàng khác không, ta suy ra

$$\rho(A) = 2$$

b)

1	3	5	-1	h1
2	-1	-3	4	h2
5	1	1	7	h3
7	7	9	1	հ4
1	3	5	-1	h1 → h1
	-7	-13	6	$h2 - 2h1 \rightarrow h2$
	-14	-26	12	h3 - 5h1 → h3
	-14	-26	8	$h4 - 7h1 \rightarrow h4$
1	3	5	-1	$h1 \rightarrow h1$
	-7	-13	6	$h2 \rightarrow h2$
	0	0	0	$h3 - 2h2 \rightarrow h3$
	0	0 ΄	-4	$h4 - 2h2 \rightarrow h4$
1	3	5	-1	
	-7	-13	6	
	0	0	-4	
	0	0	0	

Dạng bậc thang này có ba hàng khác không.

Ta suy ra $\rho(A) = 3$.

			•		
4	3	-5	2	3	h1
8	6	-7	4	2	h2
4	3	-8	2	7	h3
4	3	1	2	-5	h4
8	6	-1	4	-6	h5
4	3	-5	2	3	h1 → h1
0	0	3	0	-4	$h2 - 2h1 \rightarrow h2$
0	0	-3	0	4	- h3 - h1 → b3
0	0	6	0	-8	$h4 - h1 \rightarrow h4$
0	0	9	0	-12	$h5 - 2h1 \rightarrow h5$
4	3	-5	2	3	$h1 \rightarrow h1$
0	0	3	0	-4	$h2 \rightarrow h2$
0	0	0	0	0	h3 + h2 → h3
0	0	0	0	0	h4 - 2h2 → h4
0,	Ó	0	0	0	$h5 - 3h2 \rightarrow h5$

Dạng bậc thang này có hai hàng khác không. Do đó $\rho(A) = 2.$

3.44. Ta vẫn áp dụng các phép biến đổi sơ cấp. Nhưng trước hết ta đổi chỗ cột 2 với cột 4, rồi hàng 1 với hàng 4 để đưa λ đến vị trí hàng 4 cột 4, điều đó không ảnh hưởng đến hạng của ma trận, vì nó không thay đổi tính khác không hay bằng không của các định thức con của ma trận.

Ta được

$$A \to B = \begin{bmatrix} 1 & 7 & 2 & 4 \\ 1 & 17 & 4 & 10 \\ 4 & 3 & 3 & 1 \\ 3 & 1 & -2 & \lambda \end{bmatrix}$$

Bây giờ ta áp dụng các biến đổi sơ cấp về hàng của *B.* 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

1	7	2	4	h1
1	17	4	10	h2
4	3	3	1	Ь З
3	1	2	٦	h4
1	7	2	4	hi -> hl
0	10	2	6	h2 - h1 → h2
0	-25	-5	-15	h3 - 4h1 → h3
0	-20	-4	λ - 12	$h4 - 3h1 \rightarrow h4$
1	7	2	4	$h1 \rightarrow h1$
	10	2	6	h2 → h2
	0	0	0	h3 + 2,5h2 → h3
	0	0	X	$h4 + 2h2 \rightarrow h4$
1			· · · · · · · · · · · · · · · · · · ·	
I	7	2	4	b1 -→ h1
Ĩ	7 10	2 2	4 6	hl → hl h2 → h2
Ĩ	-			

Vậy nếu
$$\lambda = 0$$
 thì $\rho(B) = 2$ do đó $\rho(A) = \rho(B) = 2$
nếu $\lambda \neq 0$ thì $\rho(B) = 3$ do đó $\rho(A) = \rho(B) = 3$.

b) Trước hết ta đổi chỗ hàng hay cột để đưa tham số λ vào góc thấp bên phải

$$A = \begin{bmatrix} -1 & 2 & 1 & -1 & 1 \\ \lambda & -1 & 1 & -1 & -1 \\ 1 & \lambda & 0 & 1 & 1 \\ 1 & 2 & 2 & -1 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} -1 & 2 & 1 & -1 & 1 \\ 1 & 2 & 2 & -1 & 1 \\ \lambda & -1 & 1 & -1 & -1 \\ 1 & \lambda & 0 & 1 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} -1 & 1 & 1 & -1 & 2 \\ -1 & 1 & 1 & -1 & 2 \\ -1 & 1 & 1 & \lambda & -1 \\ 1 & 1 & 0 & 1 & \lambda \end{bmatrix} = B$$

20°

Bây giờ ta áp dụng các biến đổi sơ cấp về hàng của B.

-1 -1 -1 1	1 1 -1 1	1 2 1 0	$ \begin{array}{cccc} -1 & 2 \\ 1 & 2 \\ \lambda & -1 \\ 1 & \lambda \end{array} $	h1 h2 h3 h4
-1	1	1	-1 2	$h1 \rightarrow h1$
0	0,	1	2 0	$h2 - h1 \rightarrow h2$
0	-2	0	λ + 1 -3	$h3 - h1 \rightarrow h3$
0	2	1	$0 \lambda + 2$	$h4 + h1 \rightarrow h4$
-1	1	1	-1 2	$h1 \rightarrow h1$
0	Ö	1	2 0	$h2 \rightarrow h2$
0	-2	0	λ+1 -3	h3 → h3
	0	1	λ + 1 λ - 1	$h4 + h3 \rightarrow h4$
-1	1	1	-1 2	$h1 \rightarrow h1$
	-2	0	λ + 1 -3	$h3 \rightarrow h2$
		1	20	$h2 \rightarrow h3$
		1	$\lambda + 1 \lambda - 1$	h4> h4
-1	1	1	-1 2	$h1 \rightarrow h1$
	-2	0	λ + 1 -3	h2 → h2
		1	2 0	h3 → h3
		0	$\lambda - 1 \lambda - 1$	$h4 - h3 \rightarrow h4$

Vậy nếu $\lambda = 1$ thì $\rho(A) = 3$; nếu $\lambda \neq 1$ thì $\rho(A) = 4$. 3.45.

1) $\begin{cases} \lambda x + y + z = 1 \\ x + \lambda y + z = \lambda \\ x + y + \lambda z = \lambda^2 \end{cases}$

Định thức của hệ là

$$\Delta = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2)$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

141

Nếu $\lambda \neq 1$ và $\neq -2$ thì $\Delta \neq 0$ và hệ có nghiệm duy nhất :

$$x = \frac{\begin{vmatrix} 1 & 1 & 1 \\ \lambda & \lambda & 1 \\ \lambda^2 & 1 & \lambda \end{vmatrix}}{\Delta} = \frac{-(\lambda - 1)^2(\lambda + 1)}{(\lambda - 1)^2(\lambda + 2)} = -\frac{\lambda + 1}{\lambda + 2}$$
$$y = \frac{\begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & \lambda^2 & \lambda \end{vmatrix}}{\Delta} = \frac{(\lambda - 1)^2}{(\lambda - 1)^2(\lambda + 2)} = \frac{1}{\lambda + 2}$$
$$z = \frac{\begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & \lambda \\ 1 & 1 & \lambda^2 \end{vmatrix}}{\Delta} = \frac{(\lambda - 1)^2(\lambda + 1)^2}{(\lambda - 1)^2(\lambda + 2)} = \frac{(\lambda + 1)^2}{\lambda^2 + 2}$$

Nếu $\lambda = 1$ thì có hệ

(x	+у	+ z	=	1
{x	+ y	+ z	=	1
x	+ y + y + y	+ z	=	1

Hệ này có vô số nghiệm phụ thuộc hai tham số :

$$\begin{cases} y \text{ và } z \text{ tùy } y \\ x = 1 - y - z \end{cases}$$

Nếu $\lambda = -2$ thì có hệ-

 $\begin{cases} -2x + y + z = 1 \\ x - 2y + z = -2 \\ x + y - 2z = 4 \end{cases}$

Cộng 3 phương trình lại ta được

0x + 0y + 0z = 30(x + y + z) = 3.

Vậy hệ vô nghiệm.

 $\begin{cases} x + ay + a^{2}z = a^{3} \\ x + by + b^{2}z = b^{3} \\ x + cy + c^{2}z = c^{3} \\ f \text{ at Tue Jul 31 08:30:19 ICT 2012} \end{cases}$ 2) 127.0.0.1 downloaded 60383.pdf at Tue Jul 3 142

Định thức của hệ là

8.0

$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b - a)(c - a)(c - b).$$

Nếu $a \neq b \neq c$ thì $\Delta \neq 0$ và hệ có nghiệm duy nhất :

$$x = \frac{\begin{vmatrix} a^{3} & a & a^{2} \\ b^{3} & p & b^{2} \\ c^{3} & c & c^{2} \end{vmatrix}}{\Delta} = \frac{abc \cdot \Delta}{\Delta} = abc ;$$

$$y = \frac{\begin{vmatrix} 1 & a^{3} & a^{2} \\ 1 & b^{3} & b^{2} \\ 1 & c^{3} & c^{2} \end{vmatrix}}{\Delta} = \frac{-\Delta \cdot (ab + bc + ca)}{\Delta} =$$

$$= -(ab + bc + ca);$$

$$z = \frac{\begin{vmatrix} 1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3} \end{vmatrix}}{\Delta} = \frac{\Delta(a + b + c)}{\Delta} = a + b + c.$$

Nếu trong ba số a, b, c có hai số bằng nhau chẳng hạn $a = b \neq c$ thì ba phương trình của hệ chỉ còn hai

 $\begin{cases} x + ay + a^2z = a^3 \\ x + cy + c^2z = c^3 \end{cases}$

tức là

$$\begin{cases} x + ay = -a^{2}z + a^{3} \\ x + cy = -c^{2}z + c^{3} \end{cases}$$

Định thức của hệ này là :

$$\Delta = \begin{vmatrix} 1 & a \\ 1 & c \end{vmatrix} = c - a \neq 0.$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

143

Vậy hệ có vô số nghiệm phụ thuộc 1 tham số

z tùy ý $x = \frac{\begin{vmatrix} -a^2z + a^3 & a \\ -c^2z + c^3 & c \end{vmatrix}}{c - a} = ac(z - c - a);$

$$y = \frac{\begin{vmatrix} 1 & -a^2z + a^3 \\ 1 & -c^2z + c^3 \end{vmatrix}}{c - a} = z(a^2 - c^2) + a^2 + ac + c$$

Nếu a = b = c thì ba phương trình của hệ chỉ còn một $x + ay + a^2z = a^3$

Vậy hệ có vô số nghiệm phụ thuộc 2 tham số :

3)

$$y, z tuy \dot{y}$$

$$x = -ay - a^{2}z + a^{3}$$

$$\begin{cases} x + y + z = 1 \\ ax + by + cz = d \\ a^{2}x + b^{2}y + c^{2}z = d^{2} \end{cases}$$

Định thức của hệ là

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b - a)(c - a)(c - b).$$

Nếu c, b, c khác nhau thỉ $\Delta \neq 0$ và hệ có nghiệm duy nhất

$$x = \frac{\begin{vmatrix} 1 & 1 & 1 \\ d & b & c \\ \frac{d^2 & b^2 & c^2}{\Delta} \end{vmatrix}}{\Delta} = \frac{(b-d)(c-d)(c-b)}{(b-a)(c-a)(c-b)} = \frac{(b-d)(c-d)}{(b-a)(c-a)}$$

6

$$y = \frac{\begin{vmatrix} 1 & 1 & 1 \\ a & d & c \\ a^2 & d^2 & c^2 \end{vmatrix}}{\Delta} = \frac{(d-a)(c-a)(c-d)}{(b-a)(c-a)(c-b)} = \\ = \frac{(a-d)(c-d)}{(a-b)(c-b)} \\ z = \frac{\begin{vmatrix} 1 & 1 & 1 \\ a & b & d \\ a^2 & b^2 & d^2 \end{vmatrix}}{\Delta} = \frac{(b-a)(d-a)(d-b)}{(b-a)(c-a)(c-b)} = \\ = \frac{(a-d)(b-d)}{(a-c)(b-c)}.$$

Nếu a = b, $a \neq c$, d = a hay d = c thì hệ có vô số nghiệm phụ thuộc một tham số.

Nếu b = c, $a \neq b$, d = a hay d = b thì hệ cũng có vô số nghiệm phụ thuộc một tham số.

Nếu a = c, $a \neq b$, d = a hay d = b thì hệ cũng có vô số nghiệm phụ thuộc một tham số.

Nếu a = b = c = d thì hệ có vô số nghiệm phụ thuộc hai tham số.

Trong tất cả các trường hợp còn lại, hệ vô nghiệm.

Chương V

KHÔNG GIAN VECTO -KHÔNG GIAN EUCLID

A. ĐỀ BÀI

5.1. KHÔNG GIAN VECTO – ĐỊNH NGHĨA VÀ THÍ DU

5.1. Trong các bài tập dưới đây người ta cho một tập các phân tử gọi là vecto, hai phép tính cộng vecto và nhân vecto với một số. Hãy xác định tập nào là không gian vecto và nếu có tập nào không phải là không gian vecto thì chỉ ra các tiên để mà tập đổ không thỏa mãn.

1) Tập tất cả các bộ ba số thực (x, y, z) với các phép tính (x, y, z) + (x', y', z') := (x + x', y + y', z + z')

k(x, y, z) := (kx, y, z).

2) Tập các bộ ba số thực (x, y, z) với các phép tính (x, y, z) + (x', y', z') := (x + x', y + y', z + z')k(x, y, z) := (0, 0, 0).

3) Tập các cặp số thực (x, y) với các phép tính

(x, y) + (x', y') := (x + x', y + y')

k(x, y) := (2kx, 2ky).

4) Tập các số thực x với các phép tính cộng và nhân thông thường.

5) Tập các cặp số thực có dạng (x, y) trong đó $x \ge 0$ với các phép tính thông thường trong \mathbb{R}^2 .

6) Tập các cặp số thực (x, y) với các phép tính (x, y) + (x', y') := (x + x' + 1, y + y' + 1).k(x, y) := (kx, ky).

5.2. KHÔNG GIAN CON VÀ HỆ SINH

5.2. Hỏi mỗi tập dưới đây là không gian con của ${f R}^3$ hay không :

(a) Các vecto có dạng (a, 0, 0)?

878.

- (b) Các vecto có dạng (a, 1; 1)?
- (c) Các vecto có dạng (a,b, c) với b = a + c?
- (d) Các vecto có dạng (a, b, c) với b = a + c + 1?

5.3. Gọi \mathcal{M}_2 là tập các ma trận vuông cấp hai với phép cộng ma trận và nhân ma trận với một số thực thông thường. Chúng minh rằng \mathcal{M}_2 là một không gian vecto. Hồi mối tập dưới đây có là không gian con của \mathcal{M}_2 không :

(a) Các ma trận có dạng

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,

trong đó a, b, c, d là nguyên ?

(b) Các ma trận có dạng

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

trong đó a + d = 0 ?

(c) Các ma trận cấp hai sao cho $A = A^{t}$?

(d) Các ma trận cấp hai sao cho det (A) = 0?

5.4. Hỏi mỗi tập dưới đây có là không gian con của C[0, 1] không :

(a) Các $f \in C[0, 1]$ sao cho $f(x) \le 0$, $\forall x \in [0, 1]$?

(b) Các $f \in C[0, 1]$ sao cho f(0) = 0?

(c) Các $f \in C[0, 1]$ sao cho f(0) = 2?

(d) Các f là hàng ?

(e) Các $f \in C$ [0,1] có dạng $k_1 + k_2 \sin x$, trong đó k_1 và k_2 là các số thực.

5.5. Hỏi mỗi tập dưới đây có phải là không gian con của P_3 không (xem thí dụ 5.1.5 trong Thec/1) :

(a) Các đa thức $a_o + a_1 x + a_2 x^2 + a_3 x^3$ trong đó $a_o = 0$?

(b) Các đa thức $a_o + a_1x + a_2x^2 + a_3x^3$ trong đó

$$a_0 + a_1 + a_2 + a_3 = 0$$
?

(c) Các đa thức $a_o + a_1 x + a_2 x^2 + a_3 x^3$ trong đó a_o, a_1, a_3 là các số nguyên?

5.6. Hãy biểu diễn vecto x thành tổ hợp tuyến tính của u, v, w: a) x = (7, -2, 15); u = (2, 3, 5), v = (3, 7, 8); w = (1, -6, 1)b) x = (0, 0, 0); u, v, w như ở a)

c) x = (1, 4, -7, 7); u = (4, 1, 3, -2), v = (1, 2, -3, 2), w = (16, 9, 1, -3)

d) x = (0, 0, 0, 0); u, v, w như ở c).

127.0.0

5.7. Hãy xác định λ sao cho x là tổ hợp tuyến tính của u, v, w:

a) $u = (2, 3, 5), v = (3, 7, 8), w = (1, -6, 1); x = (7, -2, \lambda)$ b) $u = (4, 4, 3), v = (7, 2, 1), w = (4, 1, 6); x = (5, 9, \lambda)$ c) $u = (3, 4, 2), v = (6, 8, 7); x = (9, 12, \lambda)$

d) $\mu = (3, 2, 5), v = (2, 4, 7), w = (5, 6, \lambda); x = (1, 3, 5)$

5.8. Hãy biểu diễn các đa thức sau thành tổ hợp tuyến tính của :

$$p_{1} = 2 + x + 4x^{2} ; p_{2} = 1 - x - 3x^{2} ; p_{3} = 3 + 2x + 5x^{2}$$
(a) $5 + 9x + 5x^{2}$
(b) $2 + 6x^{2}$
(c) 0
(d) $2 + 2x + 3x^{2}$
we have a constant of the second state o

.

5.9. Ma trận nào dưới đây là tổ hợp tuyến tính của ba ma trân

8,9.

 $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 4 & -2 \\ 0 & -2 \end{bmatrix}?$ (a) $\begin{bmatrix} 6 & 3 \\ 0 & 8 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 7 \\ 5 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 6 & -1 \\ -8 & -8 \end{bmatrix}$ 5.10. Môi họ vectơ dưới đây có sinh ra ${f R}^3$ không ? $v_1 = (1, 1, 1), v_2 = (2, 2, 0), v_3 = (3, 0, 0)$ (a) $v_1 = (2, -1, 3), v_2 = (4, 1, 2), v_3 = (8, -1, 8)$ (b) $v_1 = (3, 1, 4), v_2 = (2, -3, 5), v_3 = (5, -2, 9),$ (c) $v_A = (1, 4, -1)$ $v_1 = (1, 3, 3), v_2 = (1, 3, 4), v_3 = (1, 4, 3),$ (d) $v_4 = (6, 2, 1).$ 5.11. Hỏi hàm nào dưới đây thuộc không gian sinh bởi $f = \cos^2 x$ và $g = \sin^2 x$: (b) $3 + x^2$? (a) $\cos 2x$? (d) sinx? (c) 1? 5.12. Hỏi các đa thức dưới đây có sinh ra P_2 không $p_1 = 1 + 2x - x^2$; $p_2 = 3 + x^2$; $p_3 = 5 + 4x - x^2$; $p_4 = -2 + 2x - 2x^2$? 5.3. HỌ VECTƠ ĐỘC LẬP TUYẾN TÍNH VÀ PHU THUỘC TUYẾN TÍNH 5.13. Các tập sau đây là độc lập tuyến tính hay phụ thưộc tuyến tính :

(a) $u_1 = (1, 2)$ và $u_2 = (-3, -6)$ trong \mathbb{R}^2 ? (b) $u_1 = (2, 3), u_2 = (-5, 8); u_3 = (6, 1)$ trong \mathbb{R}^2 ? (c) $p_1 = 2 + 3x - x^2$ và $p_2 = 6 + 9x - 3x^2$ trong P_2 ? 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

(d)
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$$
 và $B = \begin{bmatrix} -1 & -3 \\ -2 & 0 \end{bmatrix}$ trong \mathfrak{M}_2 ?

5.14. Các tập dưới đây là độc lập tuyến tính hay phụ thuộc tuyến tính :

a) (1, 2, 3), (3, 6, 7) trong \mathbb{R}^3 ?

b) (4, -2, 6), (6, -3, 9) trong \mathbb{R}^3 ?

c) (2, -3, 1), (3, -1, 5), (1, -4, 3) trong \mathbb{R}^3 ?

d) (5, 4, 3), (3, 3, 2), (8, 1, 3) trong \mathbb{R}^3 ?

5.15. Các tập dưới đây là độc lập tuyến tính hay phụ thuộc tuyến tính :

a) (4, -5, 2, 6), (2, -2, 1, 3), (6, -3, 3, 9), (4, -1, 5, 6)trong \mathbf{R}^4 ?

b) (1, 0, 0, 2, 5), (0, 1, 0, 3, 4), (0, 0, 1, 4, 7), (2, -3, 4, 11, 12) trong \mathbf{R}^{5} ?

5.16. Tập nào trong P_2 dưới đây là phụ thuộc tuyến tính : (a) $2 - x + 4x^2$, $3 + 6x + 2x^2$, $1 + 10x - 4x^2$? (b) $3 + x + x^2$, $2 - x + 5x^2$, $4 - 3x^2$? (c) $6 - x^2$, $1 + x + 4x^2$? (d) $1 + 3x + 3x^2$, $x + 4x^2$, $5 + 6x + 3x^2$, $7 + 2x - x^2$? 5.17. Tập nào trong C($-\infty$, ∞) dưới đây là phụ thuộc tuyến tính : (a) 2,4 $\sin^2 x$, $\cos^2 x$; (b) x, cosx? (c) 1, $\sin x$, $\sin 2x$; (d) $\cos 2x$, $\sin^2 x$, $\cos^2 x$ (e) $(1 + x)^2$, $x^2 + 2x$, 3; (f) 0, x, x^{2} ?

5.18. Tìm λ thực làm cho các vectơ sau đây phụ thuộc tuyến tinh trong \mathbb{R}^3 .

$$v_1 = \left(\lambda, -\frac{1}{2}, -\frac{1}{2}\right), \qquad v_2 = \left(-\frac{1}{2}, \lambda, -\frac{1}{2}\right),$$
$$v_3 = \left(-\frac{1}{2}, -\frac{1}{2}, \lambda\right).$$

www.VNMATH.com

5.4. KHÔNG GIAN HỮU HẠN CHIỀU VÀ CƠ SỞ CỦA NÓ

5.19. Hāy giải thích tại sao các tập sau không phải là cơ sở của không gian tương ứng :

(a)
$$u_1 = (1, 2), u_2 = (0, 3), u_3 = (2, 7)$$
 đối với \mathbb{R}^2
(b) $u_1 = (-1, 3, 2), u_2 = (6, 1, 1)$ đối với \mathbb{R}^3
(c) $p_1 = 1 + x + x^2, p_2 = x - 1$ đối với P_2 .
(d) $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 6 & 0 \\ -1 & 4 \end{bmatrix}, C = \begin{bmatrix} 3 & 0 \\ 1 & 7 \end{bmatrix},$
 $D = \begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix}, E = \begin{bmatrix} 7 & 1 \\ 2 & 9 \end{bmatrix}$ đối với \mathcal{M}_2 .

5.20. Họ nào dưới đây là cơ sở trong \mathbb{R}^2 : (a) (2, 1), (3, 0); (b) (4, 1), (-7, -8) (c) (0, 0), (1,3); (d) (3, 9), (-4,-12). 5.21. Họ nào dưới đây là cơ sở trong \mathbb{R}^3 (a) (1, 0, 0), (2, 2, 0), (3, 3, 3); (b) (3, 1, -4), (2, 5, 6), (1, 4, 8); (c) (2, -3, 1), (4, 1, 1), (0, -7, 1); (d) (1, 6, 4), (2, 4, -1), (-1, 2, 5); 5.22. Họ nào dưới đây là cơ sở trong P_2 (a) $1 - 3x + 2x^2$, $1 + x + 4x^2$, 1 - 7x(b) $4 + 6x + x^2$, $-1 + 4x + 2x^2$, $5 + 2x - x^2$ (c) $1 + x + x^2$, $x + x^2$, x^2 (d) $-4 + x + 3x^2$, $6 + 5x + 2x^2$, $8 + 4x + x^2$. 5.23. Chứng minh rằng họ sau đây là cơ sở trong \mathcal{M}_2 (a) $\begin{bmatrix} 3 & 6\\ 3 & -6 \end{bmatrix}$, $\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -8\\ -12 & -4 \end{bmatrix}$, $\begin{bmatrix} 1 & 0\\ -1 & 2 \end{bmatrix}$.

(b) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

151

5.5. SỐ CHIỀU VÀ CƠ SỞ CỦA KHÔNG GIAN CON SINH BỞI MỘT HỌ VECTƠ

5.24. Xác định số chiều và một cơ sở của không gian nghiệm của các hệ sau.

1)
$$\begin{cases} 2x_1 + x_2 + 3x_3 = 0 \\ x_1 + 2x_2 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

2)
$$\begin{cases} 3x_1 + x_2 + x_3 + x_4 = 0 \\ 5x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

3)
$$\begin{cases} 3x_1 + x_2 + 2x_3 = 0 \\ 4x_1 + 5x_3 = 0 \\ x_1 - 3x_2 + 4x_3 = 0 \end{cases}$$

4)
$$\begin{cases} x_1 - 3x_2 + x_3 = 0 \\ 2x_1 - 6x_2 + 2x_3 = 0 \\ 3x_1 - 9x_2 + 3x_3 = 0 \end{cases}$$

5)
$$\begin{cases} 2x_1 - 4x_2 + x_3 + x_4 = 0 \\ x_1 - 5x_2 + 2x_3 = 0 \\ 3x_1 - 9x_2 + 3x_3 = 0 \end{cases}$$

5)
$$\begin{cases} 2x_1 - 4x_2 + x_3 + x_4 = 0 \\ x_1 - 5x_2 + 2x_3 = 0 \\ -2x_2 - 2x_3 - x_4 = 0 \\ x_1 + 3x_2 + x_4 = 0 \\ x_1 - 2x_2 - x_3 + x_4 = 0 \end{cases}$$

6)
$$\begin{cases} x + y + z = 0 \\ 3x + 2y - z = 0 \\ 2x - 4y + z = 0 \\ 4x + 8y - 3z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

5.25. Xác định cơ sở của các không gian con của \mathbb{R}^3 (a) Mặt phẳng 3x - 2y + 5z = 0

(b) Mạt phảng x - y = 0

, *8*, 8,

(c) Dường thẳng
$$\begin{cases} x = 2t \\ y = t , -\infty < t < +\infty \\ z = 4t \end{cases}$$

(d) Các vecto có dạng (a, b, c). trong đó b = a + c.

5.26. Xác định số chiếu của các không gian con của ${f R}^4$:

(a) Các vecto có dang (a, b c, 0);

(b) Các vecto có dạng (a, b, c, d) trong đó d = a + b và c = a - b;

(c) Các vecto có dang (a, b, c, d) trong đó a = b = c = d.

5.27. Xác định số chiếu của không gian con của P_3 gồm các đa thức.

 $a_o + a_1 x + a_2 x^2 + a_3 x^3$ với $a_o = 0$

5.28. Tìm một cơ sở và số chiều của không gian con của ${f R}^3$ sinh bởi các vecto sau.

a) (1, -1, 2), (2, 1, 3), (-1, 5, 0)b) (2, 4, 1), (3, 6, -2), $(-1, 2, -\frac{1}{2})$.

5.29. Tìm một cơ sở và số chiếu của không gian con của \mathbb{R}^4 sinh bởi các vecto sau.

a)
$$(1, 1, -4, -3)$$
, $(2, 0, 2, -2)$, $(2, -1, 3, 2)$

b) (-1, 1,- 2, 0) , (3, 3, 6, 0), (9, 0, 0, 3)

c) (1, 1, 0, 0) , (0, 0, 1, 1), (-2, 0, 2, 2), (0,-3, 0, 3)

d) (1, 0, 1, -2), (1, 1, 3, -2), (2, 1, 5, -1), (1, -1, 1, 4).

5.30. a) Chúng minh rằng tập các hàm khả vi trên [a, b] và thỏa mãn

$$f'+4f=0$$

tao thành một không gian con của C [a, b].

b) Tìm số chiếu và một cơ sở của nó. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

153

5.6. TÍCH VÔ HƯỚNG VÀ KHÔNG GIAN CÓ TÍCH VÔ HƯỚNG

5.31. 1) Tính tích vô hướng Euclid trong \mathbb{R}^2 của a) u = (2, -1), v = (-1, 3)b) u = (0, 0), v = (7, 2)2) Tính chuẩn Euclid của u và v và kiểm tre lại bất đảng C-S.

5.32. 1) Với hai ma trận trong 36,

$$u = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}, \quad v = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}.$$

Hãy chúng minh rằng biểu thức

$$< u, v > := u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4$$
là một tích vô hướng

2) Áp dụng để tính tích vô hướng của

$$u = \begin{bmatrix} -1 & 2\\ 6 & 1 \end{bmatrix}, \quad v = \begin{bmatrix} 1 & 0\\ 3 & 3 \end{bmatrix}$$

3) Kiểm tra lại bất đẳng thúc C - S. 5.33. Với p và $q \in P_2$:

$$p = a_0 + a_1 x + a_2 x^2, q = b_0 + b_1 x + b_2 x^2$$

1) Chúng minh rằng

$$< p, q > := a_0 b_0 + a_1 b_1 + a_2 b_2$$

là một tích vô hướng trong P_2

2) Áp dụng để tính tích vô hướng của

$$p = -1 + 2x + x^2, q = 2 - 4x^2.$$

3) Kiểm tra lại bất đẳng thức C - S.

4) Chứng minh rằng

$$< p, q > : = p(0)q(0) + p\left(\frac{1}{2}\right)q\left(\frac{1}{2}\right) + p(1)q(1)$$

cūng là một tích vô hướng trong P₂. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 154 5) Làm lại phần 2) với tích vô hướng mới.

6) Làm lại phần 3) với tích vô hướng mới.

5.34. Xét $u = (u_1, u_2, u_3), v = (v_1, v_2, v_3) \in \mathbb{R}^3$

Hỏi biểu thức nào dưới đây có thể là một tích vô hướng trong \mathbf{R}^3 , nếu không được thì nêu lí do :

a)
$$\langle u, v \rangle := u_1 v_1 + u_3 v_3$$
;

- b) $\langle u, v \rangle$: = $u_1^2 v_1^2 + u_2^2 v_2^2 + u_3^2 v_3^2$;
- c) $\langle u, v \rangle$: = $2u_1v_1 + u_2u_2 + 4u_3v_3$;
- (d) $\langle u, v \rangle$: = $u_1v_1 u_2v_2 + u_3v_3$.

5.35. Trong \mathbb{R}^2 ta xét tích vô hướng Euclid. Hãy áp dụng bất đẳng thức C - S để chứng minh

 $|a\cos\theta + b\sin\theta| \leq \sqrt{a^2 + b^2}$

5.36. Với f = f(x), $g = g(x) \in P_3$. Chúng minh rằng

$$< f, g > : = \int_{-1}^{1} f(x)g(x)dx$$

là một tích vô hướng.

Hãy tính tích vô hướng của

a) $f = 1 - x + x^2 + 5x^3$, $g = x - 3x^2$; b) $f = x - 5x^2$, $g = 2 + 8x^2$.

5.37. Với tích vô hướng Euclid trong \mathbb{R}^3 , hãy xác định k để u và v trực giao.

a)
$$u = (2, 1, 3), v = (1, 7, k);$$

b) u = (k, k, 1), v = (k, 5, 6).

5.38. Với tích võ hướng trong P_2 ở bài tập 5.33.1 chứng minh rằng

$$p = 1 - x + 2x^2$$
 và $q = 2x + x^2$

truc giao.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

155

5.39. Cho ma trận $A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \in \mathcal{M}_2$. Với tích vô hướng ở bài tập 5.32, hỏi trong các ma trận dưới đây ma trận bào trực giao với A :

a)
$$\begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix}$$
; b) $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$?
c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$; d) $\begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix}$?

5.40. Với tích vô hướng Euclid trong \mathbf{R}^4 , hãy tim hai vectơ có chuẩn bằng 1 và trục giao với các vectơ sau

u = (2, 1, -4, 0), v = (-1, -1, 2, 2), w = (3, 2, 5, 4)5.41. V là không gian có tích vô hướng. Chúng minh 1) $||u + v||^2 + ||u - v||^2 - 2||v||^2 + 2||v||^2$

)
$$||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$$

$$< u, v > = \frac{1}{4} || u + v ||^2 - \frac{1}{4} || u - v ||^2$$

đối với mọi $u, v \in V$.

5.42. Xét thông gian C [0, π] với tích vô hướng

$$\langle f, g \rangle$$
: = $\int_{0}^{\pi} f(x)g(x)dx$

và xết các hàm số $f_n(x) = \cos nx$, n = 0, 1, 2, ...

Chứng minh rằng f_k và f_l trực giao nếu $k \neq l$.

5.43. Cho
$$x = \left(\frac{1}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right)$$
 và $y = \left(\frac{2}{\sqrt{30}}, \frac{3}{\sqrt{30}}\right)$.

Chúng minh rằng x và y trực chuẩn trong \mathbf{R}^2 theo tích vô hướng $\langle u, v \rangle := 3u_1v_1 + 2u_2v_2$ nhưng không trực chuẩn theo tích vô hướng Euclid trong đó :

$$u = (u_1, u_2), v = (v_1, v_2)$$

5.44. Chúng minh rằng

 $u_1 = (1, 0, 0, 1),$ $u_2 = (-1, 0, 2, 1),$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 $u_3 = (2, 3, 2, -2), \quad u_4 = (-1, 2, -1, 1).$

là một họ trực giao trong \mathbf{R}^4 đối với tích vô hướng Euclid.

5.45. Trong \mathbf{R}^2 có tích vô hướng Euclid. Hãy áp dụng quá tỉnh Gram – Smidt để biến cơ sở $\{u_1, u_2\}$ dưới đây thành cơ sở trực chuẩn.

(a)
$$u_1 = (1, -3), \quad u_2 = (2, 2),$$

(b) $u_1 = (1, 0), \quad u_2 = (3, -5).$

5.46. Trong \mathbb{R}^3 xét tích vô hướng Euclid. Hãy áp dụng quá trình Gram-Smidt để biến cơ sở { u_1, u_2, u_3 } dưới đây thành cơ sở trực chuẩn.

(a)
$$u_1 = (1, 1, 1), \quad u_2 = (-1, 1, 0), \quad u_3 = (1, 2, 1);$$

(b) $u_1 = (1, 0, 0), \quad u_2 = (3, 7, -2), \quad u_3 = (0, 4, 1).$

5.47. Trong \mathbb{R}^3 xét tích vô hướng Euclid. Hãy tìm một cơ sở trực chuẩn trong không gian con sinh bởi các vecto (0, 1, 2) và (-1, 0, 1).

5.48. Trong \mathbb{R}^3 xét tích vô hướng $\langle u, v \rangle := u_1v_1 + 2u_2v_2 + 3u_3v_3$. Hãy áp dụng quá trình Gram – Smidt để biến

 $u_1 = (1, 1, 1), u_2 = (1, 1, 0), u_3 = (1, 0, 0)$

thành một cơ sở trực chuẩn.

5.49. Khôg gian con của \mathbb{R}^3 sinh bởi $u_1 = \left(\frac{4}{5}, 0, -\frac{3}{5}\right)$ và $u_2 = (0, 1, 0)$ là một mặt phẳng đi qua gốc. Hãy biểu diễn w = (1, 2, 3) thành $w = w_1 + w_2$ trong đó w_1 nằm trong mặt phẳng còn w_2 trực giao với mặt phẳng.

5.50. Trong P_2 xét tích vô hướng

$$< p, q > : = \int_{-1}^{1} p(x)q(x)dx$$

Hãy áp dụng quá trình Gram – Smidt để biến cơ sở chuẩn tắc $\{1, x, x^2\}$ thành một cơ sở trực chuẩn.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

157

5.7. TỌA ĐỘ TRONG KHÔNG GIAN n CHIỀU

5.51. Hāy tìm ma trận tọa độ và vectơ tọa độ của w đối với cơ sở S = $\{u_1, u_2\}$ của \mathbb{R}^2 , trong đó

(a) $u_1 = (1, 0),$ $u_2 = (0, 1),$ w = (3, -7);(b) $u_1 = (2, -4),$ $u_2 = (3, 8),$ w = (1, 1);(c) $u_1 = (1, 1),$ $u_2 = (0, 2),$ w = (a, b).

5.52. Hây tìm ma trận tọa độ và vectơ tọa độ của w đối với cơ sở $S = \{u_1, u_2, u_3\}$ của \mathbf{R}^3 trong đó.

(a)
$$w = (2, -1, 3), u_1 = (1, 0, 0), u_2 = (2, 2, 0),$$

 $u_3 = (3, 3, 3);$
(b) $w = (5, -12, 3), u_1 = (1, 2, 3), u_2 = (-4, 5, 6),$
 $u_3 = (7, -8, 9).$

5.53. Hãy tìm vecto tọa độ và ma trận tọa độ của A đối với cơ sở $B = \{A_1, A_2, A_3, A_4\}$ của \mathcal{K}_2 trong đó

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}, \quad A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \\ A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

5.54. Hāy tìm vecto tọa độ và ma trận tọa độ của đa thức p đối với cơ sở $B = \{p_1, p_2, p_3\}$ của P_2 trong đó

$$p = 4 - 3x + x^2$$
, $p_1 = 1$, $p_2 = x$, $p_3 = x^2$

5.55. Trong \mathbf{R}^2 và \mathbf{R}^3 xét tích vô hướng Euclid và một cơ sở trực chuẩn . Hãy tìm vectơ tọa độ và ma trận tọa độ của w

(a)
$$w = (3, 7), \quad u_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \quad u_2 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right);$$

(b) $w = (-1, 0, 2), \quad u_1 = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right),$
 $u_2 = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \quad u_3 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right).$

5.56. Trong \mathbf{R}^2 xét tích vô hướng Euclid . Xét $\mathbf{S} = \{w_1, w_2\}$ với $w_1 = \left(\frac{3}{5}, -\frac{4}{5}\right), w_2 = \left(\frac{4}{5}, \frac{3}{5}\right).$

(a) Chứng minh S là một cơ sở trực chuẩn của \mathbf{R}^2 .

(b) Cho u và $v \in \mathbb{R}^2$ với $(u)_s = (1, 1), (v)_s = (-1, 4).$ Hãy tính u, d(u, v) và $\langle u, v \rangle$.

(c) Tìm u và v rồi tính u, d(u, v) và $\langle u, v \rangle$ một cách trực tiếp.

5.8. BÀI TOÁN ĐỔI CƠ SỞ

5.57. Xét các cơ sở $B = \{u_1, u_2\}$ và $B' = \{v_1, v_2\}$ của \mathbb{R}^2 trong đó

$$u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -3 \\ 4 \end{bmatrix}.$$

(a) Hãy tìm ma trận chuyển cơ sở từ B sang B'

(b) Hāy tính ma trận tọa độ $[w]_{\rm B}$ trong đó w = (3, -5) và tính $[w]_{\rm B}$.

(c) Tính $[w]_{R}$, trực tiếp và kiểm tra lại kết quả trên

(d) Tìm ma trận chuyển cơ sở từ B' sang B.

5.58. Làm lại bài tập 5.57 với

 $u_1 = (2, 2), u_2 = (4, -1), v_1 = (1, 3), v_2 = (-1, -1).$ 5.59. Xét trong \mathbb{R}^3 hai cơ sở $\mathbb{B} = \{u_1, u_2, u_3\},$

 $B' = \{v_1, v_2, v_3\}, \text{ trong do}$

$$u_1 = (-3, 0, -3)$$
, $u_2 = (-3, 2, 1)$, $u_3 = (1, 6, -1)$;

$$v_1 = (-6, -6, 0)$$
, $v_2 = (-2, -6, 4)$, $v_3 = (-2, -3, 7)$.

(a) Hãy tìm ma trận chuyển cơ sở từ B' sang B,

(b) Tính ma trận tọa độ $[w]_{B}$ của w = (-5, 8, -5) và tính $[w]_{B}$,

(c) Tính trực tiếp $[w]_{R}$ và kiểm tra lại kết quả trên.

5.60. Làm lại bài tập 5.59 với

 $u_1 = (2, 1, 1), u_2 = (2, -1, 1), u_3 = (1, 2, 1)$

 $v_1 = (3, 1, -5)$, $v_2 = (1, 1, -3)$, $v_3 = (-1, 0, 2)$.

5.61. Trong P_1 xét các cơ sở $B = \{p_1, p_2\}, B' = \{q_1, q_2\}$ với $p_1 = 6 + 3x, p_2 = 10 + 2x, q_1 = 2, q_2 = 3 + 2x$

(a) Tìm ma trận chuyển cơ sở từ B' sang B.

(b) Tính ma trận tọa độ $[p]_{B}$ với p = -4 + x rồi suy ra $[p]_{B}$.

(c) Tính trực tiếp [p]_B và kiểm tra lại kết quả trên.

(d) Tìm ma trận chuyển cơ sở từ B sang B'.

5.62. Gọi V là không gian sinh bởi $f_1 = \sin x$ và $f_2 = \cos x$. (a) Chứng minh rằng $g_1 = 2\sin x + \cos x$ và $g_2 = 3\cos x$ tạo thành một cơ sở của V.

(b) Tim ma trận chuyển cơ sở từ $B' = \{g_1, g_2\}$ sang $B = \{f_1, f_2\}$.

(c). Tính ma trận tọa độ
$$[h]_{R}$$
 với $h = 2\sin x - 5\cos x$ và suy ra $[h]_{R}$

(d) Tính trực tiếp $[h]_{B'}$ và kiểm tra lại kết quả trên.

(e) Tìm ma trận chuyển cơ sở từ B' sang B.

5.63. Trong mặt phẳng xét hệ trục vuông góc xy, và quay nó đi một góc θ = 3π/4 quanh gốc ta được hệ trục vuông góc x'y' (a) Tìm tọa độ trong hệ mới của điểm (-2, 6) trong hệ cũ. (b) Tìm tọa độ trong hệ cũ của điểm (5, 2) trong hệ mới.

5.64. Hỏi trong các ma trận dưới đây ma trận nào là trực giao ?

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, (b) $\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$,
(c) $\begin{bmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$, (d) $\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$

Tính ma trận nghịch đảo của các ma trận trực giao đó. 5.65. Chứng minh rằng hai ma trận dưới đây là trực giao với mọi giá trị của θ :

a)
$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
 b) $\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Tính nghịch đảo của chúng.

~

5.66. Xét biến đổi tọa độ trong mặt phẳng.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}.$$

1) Chúng minh rằng nổ là trực giao.

2) Tìm (x', y') của những điểm mà (x, y) là a) (2, -1); b) (4, 2); c) (-7, -8); d) (0, 0)5.67. Giải hệ

$$5x_1 + 7x_2 + 2x_3 - 3x_4 = 1$$

$$2x_1 + 3x_2 + 4x_3 - 6x_4 = 2$$

$$- 11x_1 - 15x_2 + 2x_3 - 3x_4 = 1$$

5.68. Giải hệ

$$3x_1 - 5x_2 + 2x_3 + 4x_4 = 2$$

$$7x_1 - 4x_2 + x_3 + 3x_4 = 5$$

$$5x_1 + 7x_2 - 4x_3 - 6x_4 = 3$$

5.69. Giải hệ

$$2x_1 + 5x_2 - 8x_3 = 8$$

$$4x_1 + 3x_2 - 9x_3 = 9$$

$$2x_1 + 3x_2 - 5x_3 = 7$$

$$x_1 + 8x_2 - 7x_3 = 12$$

B. BÀI GIẢI VÀ HƯỚNG DẤN

Muốn chứng minh tập vecto V trong đó có định nghĩa phép cộng vecto và phép nhân vecto với một số thực (trong tài liệu 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 11-BT.TCC.T1 161 này chỉ xét không gian vectơ trên trường số thực) là một không gian vectơ ta phải kiểm tra lại 10 tiên đề của không gian vectơ (xem định nghĩa 5. 1.1, Thcc/1), trong đó cách định nghĩa phép cộng hai vectơ của V và phép nhân một vectơ của V với một số có thực sự đúng đắn không.

5.1. 1) Không, vì tiên để 8 không thỏa mãn.

Thật vậy, theo đầu bài ta có

 $k (x, y, z) := (kx, y, z); \qquad l(x, y, z) := (lx, y, z)$ (k + l)(x, y, z) := ((k + l)x, y, z).Do d6 k(x, y, z) + l(x, y, z) = (kx, y, z) + (lx, y, z) = (kx + lx, y + y, z + z) = ((k + l)x, 2y, 2z) $\neq ((k + l)x, y, z) = (k + l) (x, y, z)$

khi y hoặc $z \neq 0$. Vậy nói chung

$$k(x, y, z) + l(x, y, z) \neq (k + l) (x, y, z),$$

nghĩa là tiên để 8 không thỏa mãn.

2) Không, vì tiên để 10 không thỏa mãn.

Thật vậy, ta có theo đầu bài

 $1(x, y, z) := (0, 0, 0) \neq (x, y, z)$

trừ khi (x, y, z) = (0, 0, 0), nghĩa là tiên để 10 không thỏa mãn:

 Không, vì tiên để 9 và tiên đề 10 không thỏa mãn. Thật vậy, theo đầu bài thì

$$k (x, y) := (2kx, 2ky)$$

 $l(x, y) := (2lx, 2ly)$

Do đó

$$k (l(x, y)) = k (2lx, 2ly) = (4klx, 4kly)$$

(kl) (x, y) = (2klx, 2kly).
Vây, nếu (x, y) \neq (0, 0) và $k \neq$ 0, $l \neq$ 0 thì
 $k(l(x, y)) \neq$ (kl) (x, y),

nghĩa là tiên đề 9 không thỏa mãn 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 162 $1(x, y) = (2x, 2y) \neq (x, y), (x, y) \neq (0, 0).$

nghĩa là tiên để 10 không thỏa mãn.

4) Tập các số thực với phép tính cộng và nhân thông thường, ki hiệu là **R**, là một không gian vecto vì cả 10 tiên để đều thỏa mãn :

- 1) $x, y \in \mathbf{R} \Rightarrow x + y \in \mathbf{R}$
- 2) x + y = y + x, $x, y \in \mathbf{R}$
- 3) $x + (y + z) = (x + y) + z, x, y, z \in \mathbf{R}$

4) Phần tử trung hòa là số không :

$$0 + x = x + 0 = x \quad \forall x \in \mathbf{R}$$

5) Phần tử đối của $x \in \mathbf{R}$ là -x vì

$$(-x) + x = x + (-x) = 0$$

6) $x \in \mathbf{R}, k \in \mathbf{R}$ thi $kx \in \mathbf{R}$

- 7) $k(x + y) = kx + ky, k \in \mathbf{R}, x, y \in \mathbf{R}$
- 8) $(k + l)x = kx + lx, k, l \in \mathbf{R}, x \in \mathbf{R}$
- 9) $k(lx) = (kl)x, k, l \in \mathbf{R}, x \in \mathbf{R}$

10) $1x = x, x \in \mathbf{R}$

5) Không, vì tiên đề 5 và tiên để 6 không thỏa mãn. Thật vậy. Phân tử trung hòa là (0, 0) vì

$$(x, y) + (0, 0) = (x, y)$$

(0, 0) + (x, y) = (x, y)

Khi $(x, y) \in \mathbf{R}^2$ thì $(-x, -y) \in \mathbf{R}^2$ và

(x, y) + (-x, -y) = (-x, -y) + (x, y) = 0.

Nhưng nếu x > 0 thỉ (x, y) thuộc tập đã cho còn (-x, -y) không thuộc tập đã cho. Cho nên tiên để 5 không thỏa mãn.

Hơn nữa, (x, y) thuộc tập đã cho, $k \in \mathbf{R}$, k < 0 thì k(x, y) = (kx, ky) có kx < 0 nên k(x, y) không thuộc tập đã cho, nghĩa là tiên để 6 không thỏa mãn.

6) Không, vì tiên để 7 và tiên đề 8 không thỏa mãn. Thật vậy, ta có

$$k(x, y) = (kx, ky)$$

 $k(x', y') = (kx', ky')$

$$k(x, y) + k(x', y') = (kx + kx' + 1, ky + ky' + 1)$$

$$k((x, y) + (x', y')) = k(x + x' + 1, y + y' + 1)$$

$$= (k(x + x' + 1), k(y + y' + 1))$$

nghĩa là

 $k((x, y) + (x', y')) \neq k(x, y) + k(x', y')$

khi $k \neq 1$. Do đó tiên để 7 không thỏa mãn.

Hơn nữa

$$(k + l) (x, y) = ((k + l)x, (k + l)y)$$

$$k(x, y) + l(x, y) = (kx, ky) + (lx, ly)$$

$$= (kx + lx + 1, ky + ly + 1),$$

nghĩa là

 $(k \neq l) (x, y) \neq k(x, y) + l(x, y).$

Do đó tiên để 8 không thỏa mãn.

Muốn chứng minh một tập con W của không gian vecto Vlà một không gian con của V ta phải chứng minh W khép kín đối với phép cộng vecto và nhân vecto với một số đã định nghĩa trong V.

5.2. a) Gọi W là tập các vectơ của \mathbb{R}^3 có dạng (a, 0, 0), $a \in \mathbb{R}$. Ta thấy $(a, 0, 0) \in W$, $(a', 0, 0) \in W \Rightarrow$

 $(a, 0, 0) + (a', 0, 0) = (a + a', 0, 0) \in W$ $k(a, 0, 0) = (ka, 0, 0) \in W.$

Vậy W là không gian con của \mathbf{R}^3 .

b) Gọi W là tập con của \mathbb{R}^3 gồm các vectơ có dạng (a, 1, 1). Ta thấy : (a, 1, 1) và (a', 1, 1) thuộc W thì

 $(a, 1, 1) + (a', 1, 1) = (a + a', 2, 2) \notin W.$

Vây W không là không gian con của \mathbb{R}^3 .

c) Gọi W là tập các vectơ (a, b, c) với b = a + c. Ta thấy

 $(a, b, c) \in W$ thi b = a + c

$$(a', b', c') \in W$$
 thì $b' = a' + c'$

$$(a, b, c) + (a', b', c') = (a + a', b + b', c + c')$$

$$b + b' = (a + a') + (c + c')$$

nên (a, b, c) + (a', b', c') $\in W$;

$$k(a, b, c) = (ka, kb, kc)$$

$$kb = ka + kc$$

nên

 $k(a, b, c) \in W.$

Vậy W là không gian con của \mathbf{R}^3 .

d) Gọi W là tập các vectơ của \mathbf{R}^3 có dạng

(a, b, c) với b = a + c + 1.

Giả sử $(a, b, c) \in W$ nghĩa là b = a + c + 1;

 $(a', b', c') \in W$ nghĩa là b' = a' + c' + 1.

Khi đó

$$(a, b, c) + (a', b', c') = (a + a', b + b', c + c')$$

$$b + b' = (a + a') + (c + c') + 2,$$

nên $(a, b, c) + (a', b', c') \notin W$.

Vậy W không phải là không gian con của \mathbf{R}^3 .

5.3. Trước hết ta chúng minh \mathcal{M}_2 là một không gian vectơ. Muốn thế ta phải kiểm tra lại 10 tiên đề.

Giả sử

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_2, \qquad \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \in \mathcal{M}_2, \qquad \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix} \in \mathcal{M}_2.$$

1) Ta phải chứng minh

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \in \mathcal{M}_2.$$

Điều đó rõ ràng vì vế trái bằng

 $\begin{bmatrix} a & + a' & b & + b' \\ c & + c' & d & + d' \\ c & + c' & d & + d' \\ 127.0.0.1 \text{ downloaded } 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 \end{bmatrix}$

8000 1000

2) Ta phải chứng minh

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Điều đó rõ ràng vì vế trái bằng :

$$\begin{bmatrix} a+a' & b+b' \\ c+c' & d+d' \end{bmatrix}$$

Còn vế phải bằng

$$\begin{bmatrix} a' + a & b' + b \\ c' + c & d' + d \end{bmatrix}$$

và trong tập các số thực \mathbf{R} có

$$a + a' = a' + a,$$
 $b + b' = b' + b$
 $c + c' = c' + c,$ $d + d' = d' + d.$

3) Ta phải chứng minh

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \left(\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} + \begin{bmatrix} a'' & a'' \\ c'' & d'' \end{bmatrix} \right) = \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \right) + \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix} .$$

Điều này rõ ràng vì

$$\begin{array}{l} \text{ve trái} &= \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' + a'' & b' + b'' \\ c' + c'' & d' + d''' \end{bmatrix} = \\ &= \begin{bmatrix} a + (a' + a'') & b + (b' + b'') \\ c + (c' + c'') & d + (d' + d'') \end{bmatrix} \\ \\ \text{ve phải} &= \begin{bmatrix} a + a' & b + b' \\ c + c' & d + d' \end{bmatrix} + \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix} = \\ &= \begin{bmatrix} (a + a') + a'' & (b + b') + b'' \\ (c + c') + c'' & (d + d') + d'' \end{bmatrix}$$

và trong tập R ta có

a + (a' + a'') = (a + a') + a'', b + (b' + b'') = (b + b') + b'' c + (c' + c'') = (c + c') + c'', d + (d' + d'') = (d + d') + d''.127.0.0,1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 166

www.VNMATH.com

4) Phân tử trung hòa (đối với phép +) là
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

vì

ø

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a+0 & b+0 \\ c+0 & d+0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0+a & 0+b \\ 0+c & 0+d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$
5) Phần tử đối của
$$\begin{bmatrix} a & b \\ c & c \end{bmatrix} = \begin{bmatrix} a-a & b-b \\ c-c & -d \end{bmatrix} = \begin{bmatrix} a-a & b-b \\ c-c & d-d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix};$$
$$\begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -a+a & -b+b \\ -c+c & -d+d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix};$$
$$\begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -a+a & -b+b \\ -c+c & -d+d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
6) k
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix} \in \mathcal{M}_2, k \in \mathbf{R}.$$
7) k
$$\begin{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = k \begin{bmatrix} a+a' & b+b' \\ c+c' & d+d' \end{bmatrix}$$
$$= \begin{bmatrix} k(a+a') & k(b+b') \\ k(c+c') & k(d+d') \end{bmatrix}$$
k
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}.$$
k
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}.$$
k
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}.$$
k
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + k \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd' \end{bmatrix}$$
$$= \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix} + \begin{bmatrix} ka & kb \\ kc' & kd' \end{bmatrix}.$$
k
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + k \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc' & kd' \end{bmatrix}.$$
k
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + k \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc' & kd' \end{bmatrix}.$$

Vậy

$$k \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \right) = k \begin{bmatrix} a & b \\ c & d \end{bmatrix} + k \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}.$$

$$(k + l) \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (k+l)a & (k+l)b \\ (k+l)c & (k+l)d \end{bmatrix}$$

$$= \begin{bmatrix} ka + la & kb + lb \\ kc + lc & kd + ld \end{bmatrix}$$

$$k \begin{bmatrix} a & b \\ c & d \end{bmatrix} + l \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix} + \begin{bmatrix} la & lb \\ lc & ld \end{bmatrix}$$

$$= \begin{bmatrix} ka + la & kb + lb \\ kc + lc & kd + ld \end{bmatrix}$$

Vậy

$$\begin{pmatrix} k + l \end{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = k \begin{bmatrix} a & b \\ c & d \end{bmatrix} + l \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

$$9) k \begin{pmatrix} l \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = k \begin{bmatrix} la & lb \\ lc & ld \end{bmatrix} = \begin{bmatrix} k(la) & k(lb) \\ k(lc) & k(ld) \end{bmatrix}$$

$$\begin{pmatrix} kl \end{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (kl)a & (kl)b \\ (kl)c & (kl)d \end{bmatrix}.$$

Trong R

$$k(la) = (kl)a; k(lb) = (kl)b;$$

 $k(lc) = (kl)c; k(ld) = (kl)d.$

Vậy

$$k \left(l \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = (kl) \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

10)

 $1 \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1a & 1b \\ 1c & 1d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012. 168 Bây giờ ta xét xem các tập con của \mathcal{M}_2 cho ở a), b), c), d) có phải là không gian con của \mathcal{M}_2 không. Ta phải kiểm tra lại tính khép kín của các tập con đó đối với phép cộng ma trận và nhân ma trận với một số.

a) Gọi W là tập các ma trận

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, a, b, c, d nguyên.

Ta thấy

8.8 8.8

$$k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix} \notin W$$

nếu k không nguyên. Vậy W không phải là không gian con của \mathcal{M}_2 .

b) Gọi W là tập các ma trận

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}, a + d = 0.$$

Giả sử

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in W, \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \in W$$

nghĩa là

$$a + d = 0, a' + d' = 0.$$

Khi đó

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} a + a' & b + b' \\ c + c' & d + d' \end{bmatrix}$$
$$(a + a') + (d + d') = (a + d) + (a' + d') = 0$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \in W.$$

vậy

Hơn nữa

$$k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$$
$$ka + kd = k(a + d) = 0.$$

Vây

$$k \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in W.$$

Do đó W là không gian con của M2. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 c) Giả sử W là tập các ma trận cấp hai A sao cho A = A' (các ma trận cấp hai đối xứng).

Giả sử

 $A \in W, B \in W$

nghĩa là

 $A = A^{t}, B = B^{t}.$

Khi đó

A + B = A^t + B^t = (A + B)^t, $A + B \in W.$

nên

Hơn nữa

 $kA = kA^{t} = (kA)^{t}$ $kA \in W.$

nên

Vậy W là một không gian con của \mathcal{M}_{γ} .

d) Gọi W là tập các ma trận cấp hai A có định thức det(A) = 0. Giả sử

 $A \in W, B \in W$

nghĩa là

$$\det(A) = 0, \, \det(B) = 0$$

Khi đó

$$\det(kA) = k^2 \det(A) = 0$$
$$kA \in W$$

nên

Nhưng det(A + B) có thể khác 0, chẳng hạn với

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix}, \quad A + B = \begin{bmatrix} 7 & 4 \\ 5 & 5 \end{bmatrix}$$

ta thấy

 $det(A) = 0, det(B) = 0, det(A + B) \neq 0.$ Do đó $A + B \notin W.$

Vậy W không phải là 1 không gian con của \mathcal{M}_2 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 170 5.4. a) Gọi W là tập các $f \in C$ [0, 1] sao cho $f(x) \leq 0$ tại $x \in [0, 1]$. Giả sử $g \in C$ [0, 1] với g(x) < 0 tại $x \in [0, 1]$. Khi đó $g \in W$, nhưng $kg \notin W$ nếu k < 0. Vậy W không phải là không gian con của C [0, 1].

b) Gọi W là tập các hàm $f \in C$ [0, 1] sao cho f(0) = 0. Giả sử f và $g \in W$, nghĩa là f(0) = 0, g(0) = 0.

Khi đó
$$(f+g)(0) = f(0) + g(0) = 0 + 0 = 0$$
;
 $f+g \in C [0, 1].$
nên $f+g \in W.$

Hơn nữa

(kf)(0) = kf(0) = k.0 = 0

$$kf \in C [0, 1],$$

 $kf \in W$.

nên

Vây W là không gian con của C [0, 1].

c) Goi $W = \{f \mid f \in C [0, 1], f(0) = 2\}$

Khi đó

 $kf \in C[0, 1];$

nhưng

$$(kf)(0) = kf(0) = k2 \neq 2.$$

nếu

 $k \neq 1$.

Vậy W không phải là không gian con của C [0, 1].

d) Goi $W = \{f \mid f = hang\}$.

Khi đó $f \in C$ [0, 1]

Giả sử f và $g \in W$. Khi đó

$$f + g = h ang$$

$$f + g \in W$$

Hơn nữa

kf = h ang $kf \in W.$

nên

nên

Vậy W là không gian con của C [0, 1] 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 201

171

e) Gọi

 $W = \{ f \mid f \in C \ [0, 1], f = k_1 + k_2 \ \text{sinx} \},$ $k_1 \ \text{và} \ k_2 \in \mathbf{R},$

Giả sử f và $g \in W$. Khi đó

$$f = k_1 + k_2 \text{ sinx, } k_1, \ k_2 \in \mathbf{R}.$$

$$g = k_3 + k_4 \text{ sinx, } k_3, \ k_4 \in \mathbf{R}.$$

Do đó

 k_1

$$f + g = (k_1 + k_3) + (k_2 + k_4) \text{ sinx},$$

+ $k_3 \in \mathbf{R}, \ k_3 + k_4 \in \mathbf{R}, \ \text{nen } f + g \in W.$

Hơn nữa

$$kf = kk_1 + kk_2 \sin x,$$

 $kk_1 \in \mathbf{R}, \ kk_2 \in \mathbf{R}, \ \text{nen } kf \in W$

Vậy W là không gian con của C [0, 1]. 5.5. a) Gọi W là tập các đa thức nói trong đầu bài. Giả sử p và $q \in W$ nghĩa là

$$p = a_1 x + a_2 x^2 + a_3 x^3,$$

$$q = b_1 x + b_2 x^2 + b_3 x^3.$$

Khi đó

 $p + q = (a_1 + b_1)x + (a_2 + b_2)x^2 + (a_3 + b_3)x^3,$ nên $p + q \in W$.

Hơn nữa

$$kp = ka_1x + ka_2x^2 + ka_3x^3,$$

nên $kp \in W$.

Vậy W là không gian con của P₃. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 172

www.VNMATH.com

b) Gọi W là tập các đa thức nói trong đầu bài. Giả sử $p, q \in W$, nghĩa là

$$p = a_o + a_1 x + a_2 x^2 + a_3 x^3, a_o + a_1 + a_2 + a_3 = 0,$$

$$q = b_o + b_1 x + b_2 x^2 + b_3 x^3, b_o + b_1 + b_2 + b_3 = 0.$$

Khi đó

$$p + q = (a_o + b_o) + (a_1 + b_1)x + (a_2 + b_2)x^2 + (a_3 + b_3)x^3$$
$$= (a_o + b_o) + (a_1 + b_1) + (a_2 + b_2) + (a_3 + b_3) =$$
$$= (a_0 + a_1 + a_2 + a_3) + (b_o + b_1 + b_2 + b_3) =$$
$$= 0 + 0 = 0,$$

nên $p + q \in W$.

Hơn nữa

$$kp = ka_o + ka_1x + ka_2x^2 + ka_3x^3$$

$$ka_o + ka_1 + ka_2 + ka_3 = k(a_o + a_1 + a_2 + a_3) = 0,$$

nên $kp \in W$.

Vậy W là không gian con của P_3 .

c) Gọi W là tập các đa thức nói trong đầu bài. Giả sử $p, q \in W$ nghĩa là

$$p = a_0 + a_1 x + a_2 x^2 + a_3 x^3, a_i \text{ nguyên}$$
$$q = b_0 + b_1 x + b_2 x^2 + b_3 x^3, b_i \text{ nguyên}$$

Khi đó

$$p + q = (a_o + b_o) + (a_1 + b_1)x + (a_2 + b_2)x^2 + (a_3 + b_3)x^3$$
$$= c_o + c_1x + c_2x^2 + c_3x^3$$

 $c_i = a_i + b_i$ nguyên

nên $p + q \in W$.

Nhưng

$$kp = ka_{0} + ka_{1}x + ka_{2}x^{2} + ka_{3}x^{3}$$

 ka_i chỉ nguyên khi k nguyên, nên $kp \notin W$.

Vậy W không phải là không gian con của P_3 .

5.6. a) Ta phải tỉm a, b, c để có

x = au + bv + cw,

tức là có

(7, -2, 15) = a(2, 3, 5) + b(3, 7, 8) + c(1, -6, 1)(7, -2, 15) = (2a, 3a, 5a) + (3b, 7b, 8b) + (c, -6c, c)(7, -2, 15) = (2a + 3b + c, 3a + 7b - 6c, 5a + 8b + c)Vây a, b, c thỏa mãn hệ phương trình tuyến tính

$$\begin{cases} 2a + 3b + c = 7 \\ 3a + 7b - 6c = -2 \\ 5a + 8b + c = 15 \end{cases}$$

Giải hệ này đối với các ẩn a, b, c ta được

$$c = t \text{ tùy } \acute{y}$$
$$b = 3t - 5$$
$$a = 11 - 5t.$$

Vậy

x = (7, -2, 15) = (11 - 5t) u + (3t - 5) v + tw, t tùy ýb) Ta phải xác định a, b, c để có (0, 0, 0) = a (2, 3, 5) + b (3, 7, 8) + c (1, -6, 1)(0, 0, 0) = (2a + 3b + c, 3a + 7b - 6c, 5a + 8b + c)Vậy a, b, c là nghiệm của hệ.

 $\begin{cases} 2a + 3b + c = 0\\ 3a + 7b - 6c = 0\\ 5a + 8b + c = 0 \end{cases}$

www.VNMATH.com

Giải hệ này như ở bài a) b được

$$c = t \text{ tùy } \acute{y}$$
$$b = 3t$$
$$a = -5t.$$

Do đó :

8,8

$$(0, 0, 0) = t (-5u + 3v + w), t tùy ý.$$

Chú ý – Bài b) có thể suy từ bài a) bằng cách thay các thành phần của x trước là 7, -2, 15 bởi 0, 0, 0.

c) Ta phải tìm a, b, c để có

$$x = au + bv + cw,$$

tức là

(1, 4, -7, 7) = a (4, 1, 3, -2) + b (1, 2, -3, 2) + c (16, 9, 1, -3)(1, 4, -7, 7) = (4a + b + 16c, a + 2b + 9c, 3a - 3b + c, -2a + 2b - 3c)Vậy a, b, c là nghiệm của hệ

$$\begin{cases}
4a + b + 16c = 1 \\
a + 2b + 9c = 4 \\
3a - 3b + c = -7 \\
-2a + 2b - 3c = 7
\end{cases}$$

Đây là một hệ tuyến tính 4 phương trình 3 ẩn. Ta giải nó bằng biến đổi sơ cấp được

 $c = -1, \quad b = 5, \quad a = 3.$

Do đó

$$(1, 4, -7, 7) = 3u + 5v - w,$$

d) Ta luôn có

(0, 0, 0, 0) = 0u + 0v + 0w.

5.7. Ta phải xác định tham số λ để cho x có thể biểu diễn thành tổ hợp tuyến tính

x = au + bv + cw

a)
$$(7, -2, \lambda) = a (2, 3, 5) + b (3, 7, 8) + c (1, -6, 1)$$

 $(7, -2, \lambda) = (2a + 3b + c, 3a + 7b - 6c, 5a + 8b + c)$

$$\begin{cases} 2a + 3b + c = 7\\ 3a + 7b - 6c = -2\\ 5a + 8b + c = \lambda \end{cases}$$

Áp dụng các phép biến đổi sơ cấp ta thu được.

2	3	1	7			
3	7	-6	-2			
5	8	1	٦			
2	3	1	7			
0	5/ 2	-15/2	-25/2			
Ò	1/2	-3/2	$\lambda \sim 35/2$			
2	3	1	7			
	5/2	-15/2	-25/2			
	0	0	λ - 15			
	2a+3b+c=17					
	5b - 15c = -25					
-	$0c = \lambda - 15$					

Vậy nếu λ ≠ 15 thỉ hệ vô nghiệm

nếu $\lambda = 15$ thì hệ có vô số nghiệm

b) Ta muốn có

 $(5, 9, \lambda) = a(4, 4, 3) + b(7, 2, 1) + c(4, 1, 6)$ (5, 9, λ) = (4a + 7b + 4c, 4a + 2b + c, 3a + b + 6c)Ta suy ra

127.0.0₁1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Ta có

,† ,~ ə:

$$\Delta = \begin{vmatrix} 4 & 7 & 4 \\ 4 & 2 & 1 \\ 3 & 1 & 6 \end{vmatrix} = -111 \neq 0$$

Do đó hệ có nghiệm duy nhất với λ bất kỉ c) Ta muốn có

$$(9, 12, \lambda) = a (3, 4, 2) + b (6, 8, 7)$$

Ta suy ra

3a	+	6b	÷	9
4a	+	8 b	=	12
2a	+	7b	=	٦

Giải hệ này bằng biến đổi sơ cấp

3	6	9
4	8	12
2	7	r
3	6	9
0	0	0 [°]
. 0	3	λ - 6
3	6	9
	3	λ - 6

Hệ trên tương đương với hệ

$$\begin{cases} 3a + 6b = 9\\ 3b = \lambda - 6 \end{cases}$$

nên có nghiệm với λ bất kì.

d) Ta muốn có

$$(1, 3, 5) = a (3, 2, 5) + b (2, 4, 7) + c (5, 6, \lambda)$$

Ta suy ra

$$\begin{cases} 3a + 2b + 5c = 1\\ 2a + 4b + 6c = 3\\ 5a + 7b + \lambda c = 5 \end{cases}$$
127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012
12-BT.TCC.T1 177

Giải hệ này bằng biến đổi sơ cấp ta thu được

3	2	5	1
2	4	6	3
5	7	λ	5
2	4	6	3
3	2	5	· · 1
5	7	λ	5
2	4	6	3
0	-4	-4	-7/2
0	-3	λ - 15	-5/2
2	4	6	3
	1.	1	7/8
	0	$\lambda - 12$	1/8

Hệ đã cho tương đương với

 $\begin{cases} 2a + 4b + 6c = 3\\ b + c = 7/8\\ (\lambda - 12)c = 1/8 \end{cases}$

Vậy nếu $\lambda = 12$ thì hệ vô nghiệm ;

 $\lambda \neq 12$ thì hệ có nghiệm duy nhất.

5.8. Ta muốn có

a) $5 + 9x + 5x^2 = ap_1 + bp_2 + cp_3$ $5 + 9x + 5x^2 = a (2 + x + 4x^2) + b (1 - x - 3x^2) + c (3 + 2x + 5x^2)$

Ta suy ra

$$5 + 9x + 5x^2 = 2a + b + 3c + (a - b + 2c)x + + (4a - 3b + 5c) x^2$$

Vậy a, b, c thỏa mãn hệ

 $\begin{cases} 2a + b + 3c = 5\\ a - b + 2c = 9\\ 4a - 3b + 5c = 5 \end{cases}$

Giải hệ này bằng biến đổi sơ cấp ta được

. 2	1	3	5
1	-1	2	9
4	-3	5	5
1	1	2	9
4	-3	5	5
2	1	3	5
1	-1	2	9
0	1	-3	-31
0	3	-1	-13
1 -	-1	2	9
	1	, -3	-31
	0	8	80

Vậy hệ đã cho tương đương với

$$\begin{cases} a - b + 2c = 9\\ b - 3c = -31\\ 8c = 80 \end{cases}$$

Ta suy ra

$$c = 10, \quad b = -1, \quad a = -12.$$

Do đó

0

$$5 + 9x + 5x^2 = -12p_1 - p_2 + 10 p_3$$

b) Ta muốn có

$$2 + 6x^{2} = ap_{1} + bp_{2} + cp_{3}$$

$$2 + 6x^{2} = a (2 + x + 4x^{2}) + b (1 - x - 3x^{2}) + c (3 + 2x + 5x^{2})$$

Vậy a, b, c thỏa mãn hệ

$$\begin{cases} 2a + b + 3c = 2 \\ a - b + 2c = 0 \\ 4a - 3b + 5c = 6 \end{cases}$$

Giải hệ này bằng biến đổi sơ cấp ta được

2	1	3	2
1	-1	2	0
4	-3	5	6
1	-1	2	0 .
4	-3	5	6
2	1	3	2
1	-1	2	0
0	1	-3	6
0	3	-1	2
1	-1	2	0
	1	-3	6
	0	8	-16

Hệ đã cho tương đương với

a	-b	+	2c	=	0
Į			3c		6
			8c	=	~ 16.
ι.					

Ta suy ra

c = -2, b = 0, a = 4.

Do đó

 $2 + 6x^2 = 4p_1 - 2p_3.$

c) Bao giờ ta cũng có

$$0 = 0p_1 + 0p_2 + 0p_3,$$

nghĩa là đa thức 0 là tổ hợp tuyến tính của p_1 , p_2 , p_3 .

d) Ta muốn có

$$2 + 2x + 3x^2 = ap_1 + bp_2 + cp_3$$

Tương tự bài a) và b) ta có

 $\begin{cases} 2a + b + 3c = 2\\ a - b + 2c = 2\\ 4a - 3b + 5c = 3 \end{cases}$

2	1	3	2
1	- 1	2	2
4	-3	5	3
1	- 1	2	2
4	-3	5	3
2	_ + 1	3	2
1	- 1	2	2
	· 1	-3	-5
	3	- 1	-2
- 1	- 1	2	2
	1	-3	-5
		8	13

Giải hệ này bằng biến đối sơ cấp ta được.

 $c = 13/8, \ b = -1/8, \ a = -11/8$

Do đó

$$2 + 2x + 3x^2 = -\frac{11}{8}p_1 - \frac{1}{8}p_2 + \frac{13}{8}p_3$$

5.9. a) Ta muốn có

$$\begin{bmatrix} 6 & 3 \\ 0 & 8 \end{bmatrix} = aA + bB + cC =$$

$$= a \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix} + c \begin{bmatrix} 4 & -2 \\ 0 & -2 \end{bmatrix} =$$

$$= \begin{bmatrix} a & 2a \\ -a & 3a \end{bmatrix} + \begin{bmatrix} 0 & b \\ 2b & 4b \end{bmatrix} + \begin{bmatrix} 4c & -2c \\ 0 & -2c \end{bmatrix}$$

$$= \begin{bmatrix} a + 4c & 2a + b - 2c \\ -a + 2b & 3a + 4b - 2c \end{bmatrix}$$

Vậy a, b, c thỏa mãn hệ

 $\begin{cases} a + 4c = 6 \\ 2a + b - 2c = 3 \\ -a + 2b = 0 \\ 3a + 4b - 2c = 8 \end{cases}$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

181

Giải hệ này bằng biến đổi sơ cấp ta được

1	. 0	4	6
2	1	-2	3
-1	2	0	0
3	4	-2	8
1	0	4	6
· 0	· 1	-10	- 9
0	2	4	6
0	4	-14	-10
1	0	4	6
	1	-10	- 9
	0	· 24	24
	0	26	26
1	0	4	6
	1	-10	- 9
		24	24
-		0	0
	(a +	4c =	6
	{b —	10c =	- 9
	- {	<i>c</i> =	1
		_	_

Ta suy ra

c = 1, b = 1, a = 2

Do đố

$$\begin{bmatrix} 6 & 3 \\ 0 & 8 \end{bmatrix} = 2A + B + C.$$

Vậy ma trận đã cho là tổ hợp tuyến tính của A, B, C : b) Ta muốn có

$$\begin{bmatrix} -1 & 7\\ 5 & 1 \end{bmatrix} = aA + bB + cC$$

Tương tự bài a) ta có

 $\begin{cases} a + 4c = -1 \\ 2a + b - 2c = 7 \\ -a + 2b = 5 \\ 3a + 4b - 2c = 1 \\ 3a + 4b - 2c = 1 \\ 127.0.0.1 \text{ downloaded } 60383.pdf \text{ at Tue Jul } 31 \ 08:30:19 \ \text{ICT } 2012 \\ 182 \end{cases}$

Biến đổi sơ cấp cho

1	0	4	- 1
2	1	-2	7
-1	2	0	5
3	4	-2	1
1	0	4	- 1
• 0	1	-10	9
• 0	2	4	4
. 0	4	-14	4
1	0	4	- 1
	1	-10	9
	0	24	-14
	0	26	-32

Vậy hệ trên tương đương với hệ

$$\begin{cases} a + 4c = -1 \\ b - 10c = 9 \\ 24c = -14 \\ \cdot 26c = -32 \end{cases}$$

Hai phướng trình cuối không tương thích, hệ vô nghiệm và ma trận đã cho không là tổ hợp tuyến tính của A, B, C.

c) Bao giờ cũng có

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0A + 0B + 0C$$

Vây ma trận "không" là tổ hợp tuyến tính của A, B, C. d) Ta muốn có

$$\begin{bmatrix} 6 & -1 \\ -8 & -8 \end{bmatrix} = aA + bB + cC.$$

Tương tự bài a) ta có

$$\begin{cases} a + 4c = 6\\ 2a + b - 2c = -1\\ -a + 2b = -8\\ 3a + 4b - 2c = -8 \end{cases}$$

Biến đổi sơ cấp cho

	1	0	4	6
	2	`1	-2	-1
	-1	2	0	-8
	3	4	-2	. ~8
	1	0	4	6
	•	· 1	-10	-13
		2	4	-2
_		4	-14	-26 ·
	1	0	4	6
		1	-10	-13
			24	24
			26	26

Vậy hệ trên tương đương với

$$\begin{cases} a + 4c = 6 \\ b - 10c = -13 \\ 24c = 24 \end{cases}$$

Hệ này có nghiệm e = 1, b = -3, a = 2. Do đó

$$\begin{bmatrix} 6 & -1 \\ -8 & -8 \end{bmatrix} = 2A - 3B + C.$$

Vậy ma trận đã cho là tổ hợp tuyến tính của A, B, C.

5.10. Muốn chứng minh một họ vecto S của không gian vecto V nào đó sinh ra cả không gian V ta phải chứng minh : mọi vecto của V đều là tổ hợp tuyến tính của các vecto thuộc S.

a) Ta.phải chứng minh : phương trình vectơ

 $av_1 + bv_2 + cv_3 = (x_1, x_2, x_3)$

luôn có nghiệm a, b, c với bất kỉ $(x_1, x_2, x_3) \in \mathbb{R}^3$. Phương trình vectơ trên viết lại là.

 $a (1, 1, 1) + b (2, 2, 0) + c (3, 0, 0) = (x_1, x_2, x_3)$

hay

127.0.0.1 downloaded 60383.pdf at Tue Jur 31 08.30.4910T 2012

Ta suy ra

$$a + 2b + 3c = x_1$$
$$a + 2b = x_2$$
$$a = x_3$$

Hệ này có định thức

$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 \\ 1 & \end{vmatrix} = -6 \neq 0$$

nên luộn có nghiệm với bất kỉ $(x_1, x_2, x_3) \in \mathbb{R}^3$. Vậy họ $\{v_1, v_2, v_3\}$ sinh ra \mathbb{R}^3 .

b) Tương tự trên ta muốn có

 $a (2, -1, 3) + b (4, 1, 2) + c (8, -1, 8) = (x_1, x_2, x_3).$ Ta suy ra

$$2a + 4b + 8\dot{c} = x_1$$

$$-a + b - c = x_2$$

$$3a + 2b + 8c = x_3$$

Hệ này có định thức

$$\begin{vmatrix} 2 & 4 & 8 \\ -1 & 1 & -1 \\ 3 & 2 & 8 \end{vmatrix} = 0$$

nên không có nghiệm với bất kỉ $(x_1, x_2, x_3) \in \mathbb{R}^3$.

Vậy họ $\{v_1, v_2, v_3\}$ không sinh ra. \mathbb{R}^3 .

c) Tương tự trên ta muốn có

$$av_1 + bv_2 + cv_3 + dv_4 = (x_1, x_2, x_3)$$

hay

$$a(3, 1, 4)$$
. + $b(2, -3, 5) + c(5, -2, 9) +$
+ $d(1, 4, -1) = (x_1, x_2, x_3)$

hay

 $(3a + 2b + 5c + d, a - 3b - 2c + 4d, 4a + 5b + 9c -d) = (x_1, x_2, x_3)$. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 185 Ta suy ra

 $\begin{cases} 3a + 2b + 5c + d = x_1 \\ a - 3b - 2c + 4d = x_2 \\ 4a + 5b + 9c - d = x_3 \end{cases}$

Đạt

A =		3 : 1 - : 4 :	2 3 – 5	5 2 9 1 4 -1	1 4 1
	3	2	5	. 1	x_1
$\overline{A} =$	1	-3	-2	4	x ₂
	4	5	9	- 1	<i>x</i> ₃

Biến đổi sơ cấp cho

3	2	5	1
1	-3	-2	4
4	5	9	-1
1	-3	-2	4
3	2	5	. 1
4	5	9	-1
1	-3	-2	4
	11	11	-11
	17	17	-17
1	-3	-2	. 4
	11	11	- 11
	0	0	0

Vậy

$$\rho(A) = 2$$

trong khi $\rho(\overline{A})$ có thể bằng 3, khi đó hệ vô nghiệm. Do đó họ $\{v_1, v_2, v_3, v_4\}$ không sinh ra \mathbb{R}^3 . d) Tương tự bài c) ta muốn có

 $av_1 + bv_2 + cv_2 + dv_4 = (x_1, x_2, x_3)$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 186

hay

 $a (1, 3, 3) + b (1, 3, 4) + c (1, 4, 3) + d (6, 2, 1) = (x_1, x_2, x_3)$ Ta suy ra

 $\begin{cases} a + b + c + 6d = x_1 \\ 3a + 3b + 4c + 2d = x_2 \\ 3a + 4b + 3c + d = x_3 \end{cases}$

Đạt

A			1 1 3 4 4 3		
	[1	1	1	6	$[x_1]$
$\overline{A} = \cdot$	3	3	4	2	x2
	1 3 3	1 3 4	1 4 3	1	$\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}$
	L				· _

Bàng biến đổi sơ cấp ta có

	1	1	1	6
	3	3	4	2
	3	4	3	1
-	1	1	1	6
	0	0	1	-16
	0	1	0	-17
	1	1	1	6
		1	0	-17
			1	-16

Do đó $\rho(A) = 3$ $\rho(\vec{A}) = 3$

Vậy hệ luôn có nghiệm,

Và họ $\{v_1, v_2, v_3, v_4\}$ sinh ra \mathbb{R}^3 .

5.11. a) Ta có

 $\cos 2x = \cos^2 x - \sin^2 x.$

Vậy cos2x thuộc không gian sinh bởi $\{\cos^2 x, \sin^2 x\}$ b) Giả sử

 $3 + x^2 = a \cos^2 x + b \sin^2 x$

tại mọi x. Khi đó :

thay x = 0 ta được a = 3;

thay $x = \pi$ ta duoc $3 + \pi^2 = a$;

tức là $\pi^2 = 0$ vì a = 3. Điều đó không chấp nhận được. Vậy $3 + x^2$ không thuộc không gian sinh bởi $\cos^2 x$ và $\sin^2 x$ c) Ta có

$$1 = \cos^2 x + \sin^2 x.$$

Vậy 1 thuộc không gian sinh bởi $\cos^2 x$ và $\sin^2 x$. d) Giả sử tại mọi x có.

 $\sin x = a \, \cos^2 x + b \, \sin^2 x.$

Thay $x = \frac{\pi}{2}$, ta được

 $1 = 0 + b \Rightarrow b = 1.$

Thay $x = 3\pi/2$, ta được

 $-1 = 0 + b \Rightarrow b = -1$

Không thể có b vừa = 1 vừa = -1.

Vậy sinx không thuộc không gian sinh bởi $\cos^2 x$ và $\sin^2 x$.

5.12. Xét
$$p = a_0 + a_1 x + a_2 x^2 \in P_2$$
.

Giả sử

$$p = \alpha p_1 + \beta p_2 + \gamma p_3 + \delta p_4,$$

nghĩa là

$$a_{\alpha} + a_{1}x + a_{2}x^{2} = \alpha(1 + 2x - x^{2}) + \beta(3 + x^{2}) + \gamma(5 + 4x - x^{2}) + \delta(-2 + 2x - 2x^{2}) = \alpha + 3\beta + 5\gamma - 2\delta + (2\alpha + 4\gamma + 2\delta)x + \beta(-2\beta) +$$

Như vậy α , β , γ , δ phải là nghiệm của hệ

$$\begin{cases} \alpha + 3\beta + 5\gamma - 2\delta = a_{o} \\ 2\alpha + 4\gamma + 2\delta = a_{1} \\ -\alpha + \beta - \gamma - 2\delta = a_{2} \end{cases}$$

Hệ này có ma trận hệ số là

$$A = \begin{bmatrix} 1 & 3 & 5 & -2 \\ 2 & 0 & 4 & 2 \\ -1 & 1 & -1 & -2 \end{bmatrix}$$

và ma trận bổ sung là

	1	3	5	-2	a_{σ}
$\overline{A} =$. 2	0	· 4	2	a,
	- 1	1	- 1	-2 2 -2	a_2
					_

Điều kiện cần và đủ để hệ có nghiệm là hạng của \overline{A} bằng hạng của A.

Ta tinh hạng của A và \overline{A} bằng biến đổi sơ cấp.

Vậy các đa thức p_1 , p_2 , p_3 , p_4 đã cho không sinh ra P_2 . 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 189 5.13. Họ vectơ $\{v_1, v_2, ..., v_m\}$ của không gian vectơ V là độc lập tuyến tính nếu phương trình

$$c_1 v_1 + c_2 v_2 + \dots + c_m v_m = \theta$$
 (3.2)

đối với các ẩn e_{i} chỉ có nghiệm tẩm thường $c_{i} = 0$.

Họ trên là phụ thuộc tuyến tính nếu phương trình (3.2) có nghiệm không tầm thường, tức là nghiệm $(c_1, c_2, ..., c_m)$ với ít nhất một $c_i \neq 0$.

a) Xét

$$\alpha u_1 + \beta u_2 = (0, 0),$$

tức là

$$\alpha$$
 (1, 2) + β (-3, - 6) = (0, 0)

hay

$$(\alpha - 3\beta, 2\alpha - 6\beta) = (0, 0).$$

Do đó α và β là nghiệm của hệ

	α		3β	=	0
1	α 2α	-	6β	=	0

Hệ này là một hệ thuần nhất có nghiệm không tẩm thường $\alpha = 3, \beta = 1$. Vậy họ $\{u_1, u_2\}$ đã cho là phụ thuộc tuyến tính

b) Xét

 $\alpha u_1 + \beta u_2 + \gamma u_3 = (0, 0)$

tức là

 α (2,3) + β (-5, 8) + γ (6, 1) = (0, 0)

hay

 $(2\alpha - 5\beta + 6\gamma, 3\alpha + 8\beta + \gamma) = (0, 0),$

Do đó α , β là nghiệm của hệ

$$\begin{cases} 2\alpha + 5\beta + 6\gamma = 0 \\ 3\alpha + 8\beta + \gamma = 0 \end{cases}$$

Đây là một hệ thuần nhất có số phương trình ít hơn số ẩn nên có vô số nghiệm chẳng hạn xem γ là tùy ý tả tính được α và β theo γ . Do đó nó có nghiệm không tấm thường.

Vậy họ $\{u_1, u_2, u_3\}$ đã cho là phụ thuộc tuyến tính. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 190

c) Xét

$$\alpha p_1 + \beta p_2 = 0 + 0x + 0x^2 \in P_2,$$

tức là

$$\alpha(2 + 3x - x^{2}) + \beta(6 + 9x - 3x^{2}) = 0 + 0x + 0x^{2}$$
 hay

$$(2\alpha + 6\beta) + (3\alpha + 9\beta) x + (-\alpha - 3\beta) x^{2} = 0 + 0x + 0x^{2}.$$

Do đó α và β là nghiệm của hệ

$$\begin{aligned} &2\alpha + 6\beta = 0\\ &3\alpha + 9\beta = 0\\ &-\alpha - 3\beta = 0 \end{aligned}$$

Ba phương trình trên tương đương với một phương trình cuối $\alpha + 3\beta = 0.$ Nó có nghiệm không tâm thường $\beta = 1, \alpha = -3.$

Vậy họ $\{p_1, p_2\}$ là phụ thuộc tuyến tính 'd) Xét

$$\alpha A + \beta B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Tức là

$$\alpha \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} + \beta \begin{pmatrix} -1 & -3 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

hay

$$\begin{pmatrix} \alpha - \beta & 3\alpha - 3\beta \\ 2\alpha - 2\beta & 0\alpha - 0\beta \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Do đó α , β là nghiệm của hệ

$$\begin{array}{rcl}
\alpha & -\beta &= 0 \\
3\alpha & -3\beta &= 0 \\
2\alpha & -2\beta &= 0 \\
0\alpha & -0\beta &= 0 \\
127.0.0.1 \text{ downloaded } 60383.pdf \text{ at Tue Jul } 31 \ 08:30:19 \ \text{ICT } 2012
\end{array}$$

191

 $\alpha - \beta = 0.$

Nó có nghiệm không tẩm thường $\alpha = 1$, $\beta = 1$. Vậy họ $\{A, B\}$ đã cho là phụ thuộc tuyến tính. 5.14. a) Xét

$$\alpha$$
 (1, 2, 3) + β (3, 6, 7) = (0, 0, 0)

tức là

$$(\alpha + 3\beta, 2\alpha + 6\beta, 3\alpha + 7\beta) = (0, 0, 0)$$

Do đó α và β là nghiệm của hệ

$$\begin{vmatrix} \alpha + 3\beta = 0 \\ 2\alpha + 6\beta = 0 \\ 3\alpha + 7\beta = 0 \end{vmatrix}$$

Hệ này tương đương với hệ hai phương trình cuối

$$\begin{cases} 2\alpha + 6\beta = 0\\ 3\alpha + 7\beta = 0 \end{cases}.$$

Hệ này có định thức

$$\Delta = \begin{vmatrix} 2 & 6 \\ 3 & 7 \end{vmatrix} = 14 - 18 = -4 \neq 0,$$

nên chỉ có nghiệm tầm thường $\alpha = 0, \beta = 0$.

Vậy họ vect
ơ $\{(1, 2, 3), (3, 6, 7)\}$ là độc lập tuyến tính trong \mathbb{R}^3 .
b) Xét

 $\alpha(4, -2, 6) + \beta (6, -3, 9) = (0, 0, 0) \in \mathbb{R}^3$

tức là

$$(4\alpha + 6\beta, -2\alpha - 3\beta, 6\alpha + 9\beta) = (0, 0, 0)$$

Do đó α , β là nghiệm của hệ

$$\begin{array}{rcl}
4\alpha + 6\beta &= 0 \\
-2\alpha - 3\beta &= 0 \\
6\alpha + 9\beta &= 0
\end{array}$$

Ba phương trình này tương đương với một phương trình $2\alpha + 3\beta = 0.$

Nó có nghiệm không tâm thường $\alpha = 3$, $\beta = -2$. Vậy họ {(4, -2, 6), (6, - 3, 9)} là phụ thuộc tuyến tính. c) Xét

 $\alpha \ (2, \ -3, \ 1) + \beta(3, \ -1, \ 5) + \gamma(1, \ -4, \ 3) = \ (0, \ 0, \ 0),$

tức là

 $(2\alpha + 3\beta + \gamma, -3\alpha - \beta - 4\gamma, \alpha + 5\beta + 3\gamma) = (0, 0, 0)$ Do đó α, β, γ là nghiệm của hệ

 $\begin{cases} 2\alpha + 3\beta + \gamma = 0\\ -3\alpha - \beta - 4\gamma = 0\\ \alpha + 5\beta + 3\gamma = 0. \end{cases}$

Hệ này có định thức

$$\Delta = \begin{vmatrix} 2 & 3 & 1 \\ -3 & -1 & -4 \\ 1 & 5 & 3 \end{vmatrix} = 35 \neq 0,$$

nên chỉ có nghiệm tâm thường $\alpha = \beta = \gamma = 0$.

Vậy họ vectơ đã cho là độc lập tuyến tính.

d) Xét

α

$$(5, 4, 3) + \beta(3, 3, 2) + \gamma(8, 1, 3) = (0, 0, 0),$$

tức là

$$(5\alpha + 3\beta + 8\gamma, 4\alpha + 3\beta + \gamma, 3\alpha + 2\beta + 3\gamma) = (0, 0, 0).$$

Do đó α , β , γ là nghiệm của hệ

$$5\alpha + 3\beta + 8\gamma = 0$$

$$4\alpha + 3\beta + \gamma = 0$$

$$3\alpha + 2\beta + 3\gamma = 0.$$

27.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 13-BT.TCC.T1 193

$$\begin{bmatrix} 5 & 3 & 8 \\ 4 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix} = 0$$

nên hệ có nghiệm không tầm thường.

Vậy họ vectơ đã cho phụ thuộc tuyến tính.

5.15. a) Xét

$$\alpha(4, -5, 2, 6) + \beta(2, -2, 1, 3) + \gamma(6, -3, 3, 9) + \delta(4, -1, 5, 6) = (0, 0, 0, 0)$$

tức là

 $(4\alpha + 2\beta + 6\gamma + 4\delta, -5\alpha - 2\beta - 3\gamma - \delta,$ $2\alpha + \beta + 3\gamma + 5\delta, 6\alpha + 3\beta + 9\gamma + 6\delta)$ = (0, 0, 0, 0)

Do đó α , β , γ , δ là nghiệm của hệ

4α	+	2β	ł	6γ	Ŧ	4δ	=	0
-5α	-	2β	-	Зү	_	δ	=	0
-2α	+	β.	+	Зү	+	5δ	÷	0
6α	+	3β	+	9γ	+	6δ	Ξ	0

Hệ này có định thức

$\begin{bmatrix} -5 & -2 & -3 & -1 \\ 0 & 1 & 0 & -5 \end{bmatrix} = 0$	
$\begin{vmatrix} 2 & 1 & 3 & 5 \end{vmatrix} = 0$,
$ \begin{vmatrix} 4 & 2 & 6 & 4 \\ -5 & -2 & -3 & -1 \\ 2 & 1 & 3 & 5 \\ 6 & 3 & 9 & 6 \end{vmatrix} = 0 $	

nên có nghiệm không tâm thường.

Vậy họ vecto đã cho là phụ thuộc tuyến tính b) Xét

 $\begin{aligned} \alpha(1, 0, 0, 2, 5) + \beta(0, 1, 0, 3, 4) + \gamma(0, 0, 1, 4, 7) + \\ + \delta(2, -3, 4, 11, 12) &= (0, 0, 0, 0, 0) \end{aligned}$

tức là

 $\begin{array}{l} (\alpha + 2\delta, \beta - 3\delta, \gamma + 4\delta, 2\alpha + 3\beta + 4\gamma + 11\delta, 5\alpha + 4\beta + 7\gamma + 12\delta) \\ = (0, 0, 0, 0, 0). \end{array}$

Do đó α , β , γ , δ là nghiệm của hệ

ſα	+	$2\delta = 0$
		$3\delta = 0$
	γ +	$4\delta = 0$
$2\alpha + 3\beta$	β + 4γ + 3	$1\delta = 0$
$5\alpha + 4\beta$	$\begin{array}{rrr} \gamma & + \\ \beta + 4\gamma & + 2 \\ \beta + 7\gamma & + 2 \end{array}$	$12\delta = 0$
Nhận phương trình t		
	2 với	-3
	3 với	-4

rối cộng các phương trình thu được với phương trình thứ 4 ta được 0 = 0.

Nhân phương trình thứ 1 với -5.

* 2 với -4 * 3 với -7

rồi cộng các phương trình thu được với phương trình thứ 5 ta được $14\delta = 0$.

Vậy hệ trên tương đương với hệ

ſα			Ŧ	$2\delta = 0$
	β		-	$3\delta = 0$
1		γ	+	$4\delta = 0$
l				$14\delta = 0$

Do đó nó có nghiệm duy nhất

 $\delta = 0, \ \gamma = 0, \ \beta = 0, \ \alpha = 0$

là nghiệm tẩm thường. Vậy họ vectơ đã cho là độc lập tuyến tính.

5.16. a) Xét

$$\alpha (2 - x + 4x^2) + \beta (3 + 6x + 2x^2) + \gamma (1 + 10x - 4x^2) = = 0 + 0x + 0x^2 \in P_2,$$

÷.

tức là

<u>م</u>

$$2\alpha + 3\beta + \gamma + (\rightarrow \alpha + 6\beta + 10\gamma)x + (4\alpha + 2\beta - 4\gamma) x^{2} = = 0 + 0x + 0x^{2}$$

Do đó α , β , γ là nghiệm của hệ ($2\alpha + 3\beta + \gamma = 0$

$$\begin{cases} -\alpha + 6\beta + 10\gamma = 0\\ 4\alpha + 2\beta - 4\gamma = 0 \end{cases}$$

Hệ này có định thức

$$\begin{vmatrix} 2 & 3 & 1 \\ -1 & 6 & 10 \\ 4 & 2 & -4 \end{vmatrix} = -6 \neq 0$$

8.8

nên chỉ có nghiệm tầm thường $\alpha = \beta = \gamma = 0$.

Vậy họ vecto đã cho độc lập tuyến tính.

b) Xét

$$\alpha (3 + x + x^2) + \beta(2 - x + 5x^2) + \gamma(4 - 3x^2) = 0 + 0x + 0x^2$$
tức là

$$3\alpha + 2\beta + 4\gamma + (\alpha - \beta)x + (\alpha + 5\beta - 3\gamma)x^2 = 0 + 0x + 0x^2$$

Do đó α , β , γ là nghiệm của hệ

$$\begin{cases} 3\alpha + 2\beta + 4\gamma &= 0\\ \alpha - \beta &= 0\\ \alpha + 5\beta - 3\gamma &= 0 \end{cases}$$

Hệ này có ba phương trình ba ẩn, thuân nhất với định thức

$$\begin{vmatrix} 3 & 2 & 4 \\ 1 & -1 & 0 \\ 1 & 5 & -3 \end{vmatrix} = 39 \neq 0$$

nên chỉ có nghiệm tấm thường $\alpha = \beta = \gamma = 0$.

Vậy họ vecto đã cho là độc lập tuyến tính.

c) Xét

$$\alpha(6 - x^2) + \beta (1 + x + 4x^2) = 0 + 0x + 0x^2,$$

tức là

 $6\alpha + \beta + \beta x + (-\alpha + 4\beta)x^2 = 0 + 0x + 0x^2$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 196 Do đó α , β là nghiệm của hệ

$$\begin{cases} 6\alpha + \beta = 0 \\ \beta = 0 \\ -\alpha + 4\beta = 0 \end{cases}$$

Hệ này chỉ có nghiệm tầm thường

$$\beta = 0, \quad \alpha = 0.$$

Vậy họ vectơ đã cho là độc lập tuyến tính.

d) Xét

$$\alpha(1 + 3x + 3x^2) + \beta (x + 4x^2) + \gamma(5 + 6x + 3x^2) + \delta(7 + 2x - x^2) = 0 + 0x + 0x^2,$$

tức là

رو رو ا

$$\begin{aligned} \alpha + 5\gamma + 7\delta + (3\alpha + \beta + 6\gamma + 2\delta)x + \\ &+ (3\alpha + 4\beta + 3\gamma - \delta)x^2 = 0 + 0x + 0x^2. \end{aligned}$$

Do đó α , β , γ , δ là nghiệm của hệ

$$\begin{cases} \alpha + 5\gamma + 7\delta = 0\\ 3\alpha + \beta + 6\gamma + 2\delta = 0\\ 3\alpha + 4\beta + 3\gamma - \delta = 0 \end{cases}$$

Đây là một hệ thuần nhất mà số phương trình ít hơn số ẩn, nên có nghiệm không tầm thường. Vậy họ vecto đã cho là phụ thuộc tuyến tính.

5.17. a) Vì 1 =
$$\sin^2 x + \cos^2 x$$

nên có 2 = $\frac{1}{2}(4\sin^2 x) + 2\cos^2 x$

hay

$$2 - \frac{1}{2} (4\sin^2 x) - 2\cos^2 x = 0.$$

Vậy họ $\{2, 4 \sin^2 x, \cos^2 x\}$ là phụ thuộc tuyến tính. b) Xét

$$\alpha x + \beta \cos x = 0$$

Thay x = 0 ta được $\beta = 0$.

Thay $x = \frac{\pi}{2}$ ta được $\alpha \frac{\pi}{2} = 0 \Rightarrow \alpha = 0$. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

197 197 101 2012

Vậy họ $\{x, \cos x\}$ là độc lập tuyến tính. c) Xết

 $\alpha + \beta \sin x + \gamma \sin 2x = 0$ Thay x = 0 ta được $\alpha = 0$ Thay $x = \frac{\pi}{2}$ ta được $\beta = 0$ Thay $x = \frac{\pi}{4}$ ta được $\gamma = 0$. Vậy họ $\{1, \sin x, \sin 2x\}$ độc lập tuyến tính. d) Xét $\alpha \cos 2x + \beta \sin^2 x + \gamma \cos^2 x = 0$ $\alpha(\cos^2 x - \sin^2 x) + \beta \sin^2 x + \gamma \cos^2 x = 0$ tức là $(\alpha + \gamma) \cos^2 x + (\beta - \alpha) \sin^2 x = 0$ Thay x = 0 ta được $\alpha + \gamma = 0$. Thay $x = \frac{\pi}{2}$ ta duoc $\beta - \alpha = 0$. Ta suy ra chẳng hạn $\alpha = 1$, $\gamma = -1$, $\beta = 1$ thỏa mãn. Vậy có nghiệm không tẩm thường $\alpha = 1, \beta = 1, \gamma = -1$ Do đó họ $\{\cos 2x, \sin^2 x, \cos^2 x\}$ là phụ thuộc tuyến tính. $\alpha(1+x)^2 + \beta(x^2+2x) + \gamma 3 = 0$ e) Xét $\alpha(1 + 2x + x^2) + \beta(2x + x^2) + 3y = 0$ tức là $\alpha + 3\gamma + (2\alpha + 2\beta)x + (\alpha + \beta)x^2 = 0 + 0x + 0x^2.$ hay Do đó α , β , γ là nghiệm của hệ $\begin{cases} \alpha + 3\gamma = 0\\ 2\alpha + 2\beta = 0\\ \alpha + \beta = 0 \end{cases}$ Hệ này tương đương với $\begin{cases} \alpha + \beta = 0 \\ \alpha + 3\psi = 0 \end{cases}$ có nghiệm không tẩm thường $\gamma = 1, \beta = 3, \alpha = -3$ Vậy họ $\{(1 + x)^2, (x^2 + 2x), 3\}$ là phụ thuộc tuyến tính. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

198

f) Ta thấy

$$1.0 + 0x + 0x^2 = 0$$

Vậy họ $\{0, x, x^2\}$ là phụ thuộc tuyến tính. 5.18 Xét

$$\alpha v_1 + \beta v_2 + \gamma v_3 = (0, 0, 0)$$

tức là

8.8

$$\alpha\left(\lambda,-\frac{1}{2},-\frac{1}{2}\right) + \beta\left(-\frac{1}{2},\lambda,-\frac{1}{2}\right) + \gamma\left(-\frac{1}{2},-\frac{1}{2},\lambda\right) = (0, 0, 0)$$

hay

$$\left(\lambda \alpha - \frac{1}{2}\beta - \frac{1}{2}\gamma, -\frac{1}{2}\alpha + \lambda\beta - \frac{1}{2}\gamma, -\frac{1}{2}\alpha - \frac{1}{2}\beta + \lambda\gamma\right) = (0, 0, 0)$$

Do đó α , β , γ là nghiệm của hệ

$$\begin{cases} \lambda \alpha - \frac{1}{2}\beta - \frac{1}{2}\gamma = 0\\ -\frac{1}{2}\alpha + \lambda\beta - \frac{1}{2}\gamma = 0\\ -\frac{1}{2}\alpha - \frac{1}{2}\beta + \lambda\gamma = 0 \end{cases}$$

Hệ này là một hệ thuần nhất có ba phương trình ba ấn và phụ thuộc tham số λ .

Định thức của hệ là

$$\Delta = \begin{vmatrix} \lambda & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \lambda & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \lambda \end{vmatrix} = \lambda^3 - \frac{3}{4}\lambda - \frac{1}{4}$$

Ta thấy

$$\Delta = \frac{1}{4}(\lambda - 1)(2\lambda + 1)^2$$

Vậy :

. . .

Nếu $\lambda \neq 1$ và $\neq -\frac{1}{2}$ thì $\Delta \neq 0$, hệ chỉ có nghiệm tầm thường, do đó họ $\{v_1, v_2, v_3\}$ là độc lập tuyến tính.

. e. e

Nếu $\lambda = 1$ hay $\lambda = -\frac{1}{2}$ thỉ $\Delta = 0$, hệ có nghiệm không tầm thường, do đó họ $\{v_1, v_2, v_3\}$ là phụ thuộc tuyến tính.

5.19. Muốn cho một họ vectơ là cơ sở cho một không gian hữu hạn chiếu thỉ một điều kiện cần là số vectơ của họ phải bằng số chiếu của không gian. Do đó nếu một họ vectơ có số vectơ khác số chiếu của không gian thỉ nó không thể là một cơ sở được.

a) Số vectơ của họ $\{u_1, u_2, u_3\}$ là 3 trong khi số chiếu của không gian \mathbb{R}^2 là 2 (\neq 3).

b) Số vectơ của họ $\{u_1, u_2\}$ là 2 trong khi số chiều của không gian \mathbb{R}^3 là 3 (\neq 2).

c) Số vectơ của họ vect
ơ $\{p_1,\ p_2\}$ là 2 trong khi số chiếu của không gia
n P_2 là 3 $(\neq$ 2).

d) Số vectơ của họ $\{A, B, C, D, E\}$ là 5 trong khi số chiều của không gian \mathcal{M}_2 là 4 (\neq 5).

5.20. Muốn cho một họ gồm n vectơ của không gian \mathbb{R}^n là một cơ sở của \mathbb{R}^n , điều kiện cần và đủ là nó độc lập tuyến tính. Muốn cho một họ gồm n vectơ của \mathbb{R}^n là độc lập tuyến tính, điều kiện cần và đủ là định thức của ma trận có các hàng (hay cột) tạo bởi các vectơ của họ viết thành hàng (hay cột) phải khác 0.

a) $\begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} = -3 \neq 0$. Vậy họ {(2, 1), (3, 0)} là một cơ sở của \mathbb{R}^2 . b) $\begin{vmatrix} 4 & 1 \\ -7 & -8 \end{vmatrix} = -32 + 7 = -25 \neq 0$. Vậy họ {(4, 1), (-7, -8)} là một cơ sở của \mathbb{R}^2 . c) $\begin{vmatrix} 0 & 0 \\ 1 & 3 \end{vmatrix} = 0$.

Vậy họ {(0, 0), (1, 3)} không phải là cơ sở của **R**² 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 200 d) $\begin{vmatrix} 3 & 9 \\ -4 & -12 \end{vmatrix} = 0$ Vậy họ {(3, 9), (-4, -12)} không phải là cơ sở của \mathbb{R}^2 . 5.21.

a) $\begin{vmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{vmatrix} = 6 \neq 0$

81.2

Vây họ {(1, 0, 0), (2, 2, 0), (3, 3, 3)} là cơ sở của không gian $\mathbf{R}^3.$

b) $\begin{vmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{vmatrix} = 26 \neq 0$

Vậy họ $\{(3, 1, -4), (2, 5, 6), (1, 4, 8)\}$ là một cơ sở của \mathbb{R}^3 .

c) $\begin{vmatrix} 2 & -3 & 1 \\ 4 & 1 & 1 \\ 0 & -7 & 1 \end{vmatrix} = 0$

Vây họ $\{(2, -3, 1), (4, 1, 1), (0, -7, 1)\}$ không phải là cơ sở của \mathbb{R}^3 .

d) $\begin{vmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{vmatrix} = 0$

Vậy họ {(1, 6, 4), (2, 4, -1), (-1, 2, 5)} không phải là cơ sở của không gian \mathbf{R}^3 .

5.22. P₂ là không gian ba chiếu. Muốn cho 3 vectơ

$$p = a_{0} + a_{1}x + a_{2}x^{2}$$

$$q = b_{0} + b_{1}x + b_{2}x^{2}$$

$$r = c_{0} + c_{1}x + c_{2}x^{2}$$

tạo thành một cơ sở cho P_2 , điều kiện cần và đủ là chúng độc lập tuyến tính, tức là phương trình

$$\alpha p + \beta q + \gamma r = 0$$

chỉ có nghiệm tẩm thường $\alpha = \beta = \gamma = 0$. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 201

Ч. С.

Phương trình trên viết

$$\alpha(a_{0} + a_{1}x + a_{2}x^{2}) + \beta(b_{0} + b_{1}x + b_{2}x^{2}) + \gamma(c_{0} + c_{1}x + c_{2}x^{2}) = 0 + 0x + 0x^{2},$$

hay

$$\begin{aligned} a_0 \alpha + b_0 \beta &+ c_0 \gamma + (a_1 \alpha + b_1 \beta + c_1 \gamma) x + \\ &+ (a_2 \alpha + b_2 \beta + c_2 \gamma) x^2 = 0 + 0 x + 0 x^2. \end{aligned}$$

Do đó α , β , γ là nghiệm của hệ

$$\begin{cases} a_0 \alpha + b_0 \beta + c_0 \gamma = 0 \\ a_1 \alpha + b_1 \beta + c_1 \gamma = 0 \\ a_2 \alpha + b_2 \beta + c_2 \gamma = 0 \end{cases}$$

Đây là một hệ thuần nhất ba phương trình ba ẩn α , β , γ . Định thức của hệ là

$$\Delta = \begin{vmatrix} a_o & b_o & c_o \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

Nếu $\Delta \neq 0$ thì hệ chỉ có nghiệm tấm thường $\alpha = \beta = \gamma = 0$. Nếu $\Delta = 0$ thì hệ có nghiệm không tấm thường.

Vậy muốn cho họ {p, q, r} là một cơ sở của P₂ điều kiện cần và đủ là $\Delta \neq 0$:

 $\Delta \neq 0$ thì họ {p, q, r} là một cơ sở ;

 $\Delta = 0$ thì họ {p, q, r} không phải là một cơ sở cho P₂.

a)
$$\begin{vmatrix} 1 & 1 & 1 \\ -3 & 1 & -7 \\ 2 & 4 & 0 \end{vmatrix} = 0$$

Vậy họ $\{1 - 3x + 2x^2, 1 + x + 4x^2, 1 - 7x\}$ không phải là một cơ sở của P_2

b)
$$\begin{vmatrix} 4 & -1 & 5 \\ 6 & 4 & 2 \\ 1 & 2 & -1 \end{vmatrix} = 0$$

Vậy họ $\{4 + 6x + x^2, -1 + 4x + 2x^2, 5 + 2x - x^2\}$ không phải là một cơ sở của P_2 . 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 202 c) $\begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 1 \neq 0.$ Vậy họ $\{1 + x + x^2, x + x^2, x^2\}$ là một cơ sở của P_2 . d) $\begin{vmatrix} -4 & 6 & 8 \\ 1 & 5 & 4 \\ 3 & 2 & 1 \end{vmatrix} = -26 \neq 0$ Vậy họ $\{4 - x + 3x^2 - 6 + 5x + 2x^2, 8 + 4x + x^2\}$ là một c

Vây họ $\{4 - x + 3x^2, 6 + 5x + 2x^2, 8 + 4x + x^2\}$ là một cơ sở của P_2 .

5.23. M, là không gian 4 chiếu.

Một họ 4 ma trận cấp hai $\{A, B, C, D\}$ là cơ sở của \mathcal{M}_2 nếu $\{A, B, C, D\}$ độc lập tuyến tính tức là nếu phương trình

$$\alpha A + \beta B + \gamma C + \delta D = 0 \tag{3.3}$$

chỉ có nghiệm tầm thường $\alpha = \beta = \gamma = \delta = 0$.

a) Phương trình (3.3) viết thành

$$\alpha \begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix} + \beta \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix} + \delta \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

tức là

$$\begin{bmatrix} 3\alpha + \delta & 6\alpha - \beta - 8\gamma \\ 3\alpha - \beta - 12\gamma - \delta & -6\alpha - 4\gamma + 2\delta \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Vậy α , β , γ , δ là nghiệm của hệ

$$\begin{cases} 3\alpha + \delta = 0\\ 6\alpha - \beta - 8\gamma = 0\\ 3\alpha - \beta - 12\gamma - \delta = 0\\ -6\alpha - 4\gamma + 2\delta = 0. \end{cases}$$

Hệ này có định thức

$$\Delta = \begin{vmatrix} 3 & 0 & 0 & 1 \\ 6 & -1 & -8 & 0 \\ 3 & -1 & -12 & -1 \\ 6 & 0 & -4 & 2 \end{vmatrix} = -48 \neq 0.$$

Do đó hệ chỉ có nghiệm tầm thường :

$$\alpha = \beta = \gamma = \delta = 0.$$

Vậy họ $\{A, B, C, D\}$ đã cho là một cơ sở của \mathcal{M}_2 . b) Phường trình (3.3) viết

$$\alpha \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \delta \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

tức là

$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Ta suy ra

$$\alpha = 0 \beta = 0 \gamma = 0 \delta = 0.$$

Vậy họ

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

là một cơ sở của \mathcal{M}_{2} .

5.24. Xét hệ thuần nhất có n ẩn số Ax = 0. Nghiệm của hệ là một bộ n số

$$x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n.$$

Gọi W là tập các nghiệm của hệ. Nếu x và $y \in W$ thỉ Ax = 0 và Ay = 0. Do đó :

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

 $A(kx) = kAx = k \ 0 = 0$

Vậy

 $x+y \in W$ và $kx \in W$,

nghĩa là W khép kín đối với phép cộng vectơ và phép nhân vectơ với một số của \mathbf{R}^n . Do đó W là một không gian con của \mathbf{R}^n .

Muốn tìm số chiều và cơ sở của W ta tìm số vectơ độc lập tuyến tính sinh ra W. Để làm việc đó ta phải tìm nghiệm của hệ thuần nhất đã cho.

1) Xét hệ

$$\begin{cases} 2x_1 + x_2 + 3x_3 &= 0\\ x_1 + 2x_2 &= 0\\ x_2 + x_3 &= 0 \end{cases}$$

Hệ này có 3 phương trình 3 ẩn với định thức

$$\Delta = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 6 \neq 0$$

Vậy hệ đã cho chỉ có nghiệm tầm thường (0, 0, 0)

 $W = \{(0, 0, 0)\}$

Do đó $\dim(W) = 0$ và W không có cơ sở. 2) Ta có hệ

$$\begin{cases} 3x_1 + x_2 + x_3 + x_4 = 0\\ 5x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

Xét định thức của ma trận các hệ số của x_1, x_2 :

$$\Delta = \begin{vmatrix} 3 & 1 \\ 5 & -1 \end{vmatrix} = -8 \neq 0$$

Do đó ta xem x_3 và x_4 là các ẩn tự do có thể lấy giá trị tùy ý và giải hệ trên đối với các ẩn chính x_1 , x_2 : ta được

$$x_1 = -\frac{1}{4}x_3, \quad x_2 = -\frac{1}{4}x_3 - x_4.$$

Vậy nghiệm của hệ có dạng

$$x = (x_1, x_2, x_3, x_4) = \left(-\frac{1}{4}x_3, -\frac{1}{4}x_3 - x_4, x_3, x_4\right) =$$
$$= \left(-\frac{1}{4}x_3, -\frac{1}{4}x_3, x_3, 0\right) + (0, -x_4, 0, x_4) =$$
$$= x_3 \left(-\frac{1}{4}, -\frac{1}{4}, 1, 0\right) + x_4 (0, -1, 0, 1)$$

Vậy hai vectơ

$$u = \left(-\frac{1}{4}, -\frac{1}{4}, 1, 0\right), v = (0, -1, 0, 1)$$

sinh ra W (tập các nghiệm của hệ thuần nhất đã cho). Hơn nữa chúng lại độc lập tuyến tính vì từ

$$\alpha u + \beta v = \alpha \left(-\frac{1}{4}, -\frac{1}{4}, 1, 0 \right) + \beta (0, -1, 0, 1) =$$

= (0, 0, 0, 0)

suy ra

4

$$-\frac{1}{4} \alpha = 0, -\frac{1}{4} \alpha - \beta = 0, \alpha = 0, \beta = 0,$$

tức là điều kiện $\alpha u + \beta v = (0, 0, 0, 0)$ chỉ thỏa mặn khi $\alpha = \beta = 0$.

Vậy W có số chiếu bằng 2 và nhận $\{u, v\}$ làm một cơ sở. 3) Xét hệ

$$\begin{cases} 3x_1 + x_2 + 2x_3 = 0\\ 4x_1 + 5x_3 = 0\\ x_1 - 3x_2 + 4x_3 = 0 \end{cases}$$

Đây là một hệ thuần nhất ba phương trình ba ẩn, có định thức

$$\Delta = \begin{vmatrix} 3 & 1 & 2 \\ 4 & 0 & 5 \\ 1 & -3 & 4 \end{vmatrix} = 10 \neq 0.$$

Do đó hệ chỉ có nghiệm tẩm thường (0, 0, 0) :

$$W = \{(0, 0, 0)\}$$

Vậy không gian các nghiệm của hệ đã cho có số chiều bằng 0 và không có cơ sở

4) Xét hệ

$$\begin{cases} x_1 - 3x_2 + x_3 = 0\\ 2x_1 - 6x_2 + 2x_3 = 0\\ 3x_1 - 9x_2 + 3x_3 = 0 \end{cases}$$

Ba phương trình này tương đương với 1 phương trình đấu.

 $x_1 - 3x_2 + x_3 = 0.$

Vậy nghiệm của hệ có dạng

$$x_2$$
 và x_3 tùy ý, $x_1 = 3x_2 - x_3$.

Do đó

W = {x = (x_1, x_2, x_3) = ($3x_2 - x_3, x_2, x_3$), x_2, x_3 tùy ý}. Ta nhận thấy

$$(3x_2 - x_3, x_2, x_3) = (3x_2, x_2, 0) + (-x_3, 0, x_3) =$$

= $x_2(3, 1, 0) + x_3(-1, 0, 1).$

Vậy hai vectơ u = (3, 1, 0) và v = (-1, 0, 1) sinh ra W. Chúng lại độc lập tuyến tính vì từ

$$\alpha \mathbf{u} + \beta \mathbf{v} = \alpha \ (3, 1, 0) + \beta(-1, 0, 1) = (0, 0, 0)$$

ta suy ra

$$3\alpha - \beta = 0, \ \alpha = 0, \ \beta = 0,$$

nghĩa là từ $\alpha u + \beta v = (0, 0, 0)$ suy ra $\alpha = \beta = 0$.

Vì $\{u, v\}$ sinh ra W và độc lập tuyến tính nên W là không gian hai chiều và $\{u, v\}$ là một cơ sở.

5) Xét hệ

$$2x_1 - 4x_2 + x_3 + x_4 = 0$$

$$x_1 - 5x_2 + 2x_3 = 0$$

$$- 2x_2 - 2x_3 - x_4 = 0$$

$$x_1 + 3x_2 + x_4 = 0$$

$$x_1 - 2x_2 - x_3 + x_4 = 0.$$

Đây là một hệ thuần nhất có 5 phương trình 4 ẩn. Ta giải nó bằng biến đổi sơ cấp.

2	-4	1	1	0	h ₁
1	-5	2	0	0	h ₂
0	-2	-2	-1	0	h ₃
1	3	0	1	0	h ₄
1	-2	-1	1 '	0	h ₅
1	-5	2	0	0	$h_2 \rightarrow h_1$
	-2	-2	-1	0	$h_{3}^2 \rightarrow h_2^1$
1	-2 3	0	1	0	$h_4 \rightarrow h_3^2$
1	-2	-1	1	0	$h_5 \rightarrow h_4$
2	-4	1	1	0	$h_1 \rightarrow h_5$
1	-5	2	0	0	$h_1 \rightarrow h_1$
	-2	-2	-1	0	$h_2 \rightarrow h_2$
	8	-2	1	0	$h_3 - h_1 \rightarrow h_3$
	3	-2 -3 -3	1	0	$h_4 - h_1 \rightarrow h_4$
	6	~3	1	0	$h_5 - 2h_1 \rightarrow h_5$
1	-5	2	0	0	$h_1 \rightarrow h_1$
	-2	-2 -10	-1	0	$h_2^{\dagger} \rightarrow h_2^{\dagger}$
		-10	~3	0	$h_3 + 4h_2 \rightarrow h_3$
		-6	-1/2	0	$h_4 + \frac{3}{2}h_2 \rightarrow h_4$
		-9	-2	0	$h_5 + 3h_2 \rightarrow h_5$
1	-5	2	0	0	
	-2	-2	-1	0	
		-10	-3	0	
			13	0	$h = \frac{3}{h} \rightarrow h$
			10	v	$n_4 5 n_3 - n_4$
			$\frac{\overline{10}}{\overline{10}}$	0	$h_4 - \frac{3}{5} h_3 \rightarrow h_4$ $h_5 - \frac{9}{10} h_3 \rightarrow h_5$

Vậy hệ chỉ có nghiệm tâm thường

 $x_4 = 0, x_3 = 0, x_2 = 0, x_1 = 0.$

Do đó

 $W = \{(0, 0, 0, 0)\}$

Vậy dim (W) = 0, W không có cơ sở.

127.0.0₂₀₈ downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

6) Xét hệ

$$x_{1} + x_{2} + x_{3} = 0$$

$$3x_{1} + 2x_{2} - x_{3} = 0$$

$$2x_{1} - 4x_{2} + x_{3} = 0$$

$$4x_{1} + 8x_{2} - x_{3} = 0$$

$$2x_{1} + x_{2} - 2x_{3} = 0$$

Đây là một hệ thuẩn nhất có 5 phương trình ba ẩn. Ta giải nó bằng biến đổi sơ cấp :

1	1	1	0	h ₁
3	2	-1	0	h ₂
2	-4	1	0	h ₃
4 ·	8	-3	0	h ₄
2	1	-2	0	h ₅
1	1	1	0	$h_1 \rightarrow h_1$
•	-1	-4	0	$h_2 - 3h_1 \rightarrow h_2$
	-6	-1	0	$h_3 - 2h_1 \rightarrow h_3$
	4	-7	0	$h_4 - 4h_1 \rightarrow h_4$
	-1	-4	0	$h_5 - 2h_1 \rightarrow h_5$
1	1	1	0	$h_1 \rightarrow h_1$
	-1	-4	0	$h_2 \rightarrow h_2$
		23	0	$h_3 - 6h_2 \rightarrow h_3$
		-23	0	$h_4 + 4h_2 \rightarrow h_4$

Vậy hệ chỉ có nghiệm tâm thường

$$x_3 = 0, x_2 = 0, x_1 = 0$$

Do đó

$$W = \{(0, 0, 0)\}$$

dim (W) = 0

W không có cơ sở.

5.25. a) Xét phương trình :

127.0.0.1 downloaded 603383.pdf at Tue Jul 31 08:30:19 ICT 2012 14-вт.тсс.т1 209 Xem y và z tùy ý ta có

$$x = \frac{1}{3}(2y - 5z) .$$

Vậy

$$W = \left\{ (x, y, z) = \left(\frac{2}{3}y - \frac{5}{3}z, y, z \right), y, z \text{ tùy } y \right\}$$

Ta có

$$\left(\frac{2}{3}y - \frac{5}{3}z, y, z\right) = \left(\frac{2}{3}y, y, 0\right) + \left(-\frac{5}{3}z, 0, z\right)$$
$$= y\left(\frac{2}{3}, 1, 0\right) + z\left(-\frac{5}{3}, 0, 1\right)$$

Vậy hai vectơ

$$u = \left(\frac{2}{3}, 1, 0\right)$$
 và $v = \left(-\frac{5}{3}, 0, 1\right)$

sinh ra W. Chúng độc lập tuyến tính vì từ

$$\alpha u + \beta v = \alpha \left(\frac{2}{3}, 1, 0\right) + \beta \left(-\frac{5}{3}, 0, 1\right) = (0, 0, 0)$$

ta suy ra

$$\frac{2}{3}\alpha - \frac{5}{3}\beta = 0$$
, $\alpha = 0$, $\beta = 0$.

tức là từ $\alpha u + \beta v = (0, 0, 0)$ chỉ suy ra $\alpha = \beta = 0$.

Vậy dim W= 2 và $\{u, v\}$ là một cơ sở.

b) Xét phương trình x - y = 0

Ta có tập

 $W = \{ (x, y, z) | x - y = 0, z \text{ tùy } y \}$

Vậy $(x, y, z) \in W \Leftrightarrow (x, y, z) = (y, y, z), y$ và z tùy ý. Nhưng

$$(x, y, z) = (y, y, z) = (y, y, 0) + (0, 0, z)$$
$$= y(1, 1, 0) + z(0, 0, 1).$$

ز.

Vậy hai vectơ

ъ

u = (1, 1, 0) và v = (0, 0, 1)

sinh ra W. Hơn nữa từ

 $\alpha u + \beta v = \alpha(1, 1, 0) + \beta(0, 0, 1) = (0, 0, 0)$

ta suy ra $\alpha = 0$, $\beta = 0$, nên $\{u, v\}$ độc lập tuyến tính.

Vậy W là không gian 2 chiếu nhận $\{u, v\}$ làm một cơ sở. c) Ta thấy

$$W = \{(x, y, z) = (2t, t, 4t), t \text{ tùy } y\}.$$

Nhung

$$(2t, t, 4t) = t(2, 1, 4).$$

Vậy W là không gian một chiều nhận u = (2, 1, 4) làm cơ sở. d) Xét tập

$$W = \{(a, b, c) \in \mathbf{R}^3, b = a + c\}.$$

Như vậy

$$(a, b, c) \in W \Leftrightarrow (a, b, c) = (a, a + c_r \cdot c)$$

Nhưng

$$(a, a + c, c) = (a, a, 0) + (0, c, c)$$
$$= a(1,1,0) + c(0, 1, 1).$$

Vậy hai vecto u = (1, 1, 0) và v = (0, 1, 1) sinh ra W. Chúng độc lập tuyến tính vl từ

$$\alpha u + \beta v = \alpha(1, 1, 0) + \beta(0, 1, 1) = (0, 0, 0)$$

ta suy ra

$$\begin{cases} \alpha = 0 \\ \alpha + \beta = 0 \\ \beta = 0 \end{cases}$$

tức là từ $\alpha u + \beta v = 0$ chỉ suy ra $\alpha = \beta = 0$.

Vây dim (W) = 2 và $\{u, v\}$ là một cơ sở.

5.26. a) Xét tập

$$W = \{ (a, b, c, 0) \in \mathbf{R}^4 \}$$

Ta có

(a, b, c, 0) = a(1, 0, 0, 0) + b(0, 1, 0, 0) + c(0, 0, 1, 0).Vây 3 vecto

u = (1, 0, 0, 0), v = (0, 1, 0, 0), w = (0, 0, 1, 0)sinh ra W. Chúng độc lập tuyến tính vì từ

$$\alpha u + \beta v + \gamma w = \alpha (1, 0, 0, 0) + \beta (0, 1, 0, 0) + + \gamma (0, 0, 1, 0) = (0, 0, 0, 0)$$

ta suy ra

$$\alpha = 0, \quad \beta = 0, \quad \gamma = 0$$

Vây dim (W) = 3 và $\{u, v, w\}$ là một cơ sở của nó. b) Xét tập

 $W = \{(a, b, c, d) \in \mathbf{R}^4, d = a + b, c = a - b\}$

nghĩa là

$$W = \{(a, b, c, d) = (a, b, a - b, a + b)\}.$$

Ta nhận thấy

$$(a, b, a - b, a + b) = (a, 0, a, a) + (0, b, -b, b) =$$
$$= a(1, 0, 1, 1) + b(0, 1, -1, 1).$$

Vậy hai vectơ

$$u = (1, 0, 1, 1), \quad v = (0, 1, -1, 1)$$

sinh ra W. Chúng độc lập tuyến tính vì từ

 $\alpha u + \beta v = \alpha(1, 0, 1, \cdot 1) + \beta(0, 1, -1, 1) = (0, 0, 0, 0)$ ta suy ra

 $\begin{cases} \alpha = 0 \\ \beta = 0 \\ \alpha - \beta = 0 \\ \alpha + \beta = 0 \end{cases}$

tức là $\alpha u + \beta v$ chỉ bằng 0 khi $\alpha = \beta = 0$.

Vây dim(W) = 2 và $\{u, v\}$ là một cơ sở của nó. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 c) Xét tập

. . .

 $W = \{(a, a, a, a) \in \mathbf{R}^4\}$

Vì (a, a, a, a) = a(1, 1, 1, 1) nên vecto u = (1, 1, 1, 1)sinh ra W và độc lập tuyến tính. Vậy W là không gian 1 chiều và u = (1, 1, 1, 1) là cơ sở.

5.27. Xét tập

$$W = \{ p \mid p = 0 + a_1 x + a_2 x^2 + a_3 x^3 \in P_3 \}$$

W sinh bởi ba vectơ

$$p_1 = x, \quad p_2 = x^2, \quad p_3 = x^3$$

$$\alpha p_1 + \beta p_2 + \gamma p_3 = 0$$

tức là

$$\alpha x + \beta x^2 + \gamma x^3 = 0 ;$$

khi thay x = 1 ta được

 $\alpha + \beta + \gamma = 0 ;$

khi thay x = -1 ta được

 $-\alpha + \beta - \gamma = 0 ;$

ta suy ra $\beta = 0$.

Bây giờ thay x = 2 ta được

$$2\alpha + 8\gamma = 0 ;$$

kết hợp với $\alpha + \gamma = 0$ khi x = 1 ta suy ra

$$\alpha = \gamma = 0.$$

Vậy từ $\alpha p_1 + \beta p_2 + \gamma p_3 = 0$ ta suy ra $\alpha = \beta = \gamma = 0$.

Do đó $\{p_1, p_2, p_3\} = \{x, x^2, x^3\}$ là ba vecto độc lập tuyến tính của P_3 . Chúng tạo nên một không gian con của P_3 có số chiều bằng 3 và nhân $\{x, x^2, x^3\}$ làm 1 cơ sở. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 213 5.28. a) Ta tính hạng của họ ba vectơ đã cho. Ta có định thức

$$\begin{vmatrix} 1 & -1 & 2 \\ 2 & 1 & 3 \\ -1 & 5 & 0 \end{vmatrix} = 10 \neq 0,$$

nên hạng của chúng bằng 3, ba vecto đó độc lập tuyến tính. Vậy chúng sinh ra cả không gian \mathbf{R}^3 và chúng tạo thành một cơ sở của \mathbf{R}^3 .

b) Ta tính hạng của ba vectơ đã cho. Ta có định thức

 $\begin{vmatrix} 2 & 4 & 1 \\ 3 & 6 & -2 \\ -1 & 2 & -1/2 \end{vmatrix} = 28 \neq 0$

Vậy hạng của chúng bằng 3. Ba vecto đó độc lập tuyến tính. Do đó chúng sinh ra cả \mathbf{R}^3 và tạo thành một cơ sở của \mathbf{R}^3 .

5.29. a) Xét hạng của 4 vecto đã cho. Ta có

1	1	-4	-3
2	0	2	-2
2	-1	3	2
. 1	1	-4	-3
	-2	10	4
	-3	11	8
1	1 -2	-4 10 -4	-3 4 2

Vậy hạng của chúng bằng 3. Ba vectơ đó độc lập tuyến tính. Chúng sinh ra không gian con của \mathbb{R}^4 . Không gian con đó có số chiều bằng 3 và nhận ba vectơ đã cho làm một cơ sở.

b) Xét hạng của ba vectơ đã cho. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

214

Ta có					• .
	-1	1	-2	0	h1
	3	3	6	0	h2
• .	9	0	0	3	h3
-	1	-1	2	0	$(-1)h1 \rightarrow h1$
		6	0	0	$h2 + 3h1 \rightarrow h2$
		9	-18	3	$h3 + 9h1 \rightarrow h3$
-	. 1	-1	2	0	$h1 \rightarrow h1$
		6	0	0	h2 → h2
			-1 8	3	$h3 - (1,5)h2 \rightarrow h3$

Vậy hạng của chúng bằng 3. Ba vectơ này độc lập tuyến tính, chúng sinh ra một không gian con của \mathbf{R}^4 . Không gian con này có số chiều bằng 3 và nhận ba vectơ đã cho làm một cơ sở.

c) Xét hạng của 4 vecto đã cho. Ta có

8

	1	1	0	0	hl
	0	0	1	1	h2
	-2	0	Ž	2	h3 [′] .
	0	-3	0	3	h4
	1	1	0	0	$h1 \rightarrow h1$
	0	0	1	1	$h2 \rightarrow h2$
		2	2	2	$h3 + 2h1 \rightarrow h3$
		-3	0	3	$h4 \rightarrow h4$
	1	1	0	0	$hI \rightarrow h1$
· -	0	2	2	2	$h3 \rightarrow h2$
	0	0	1	1	$h2 \rightarrow h3$
· .	0	0	3	6	$h4 + 1,5h3 \rightarrow h4$
Vây	7				
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 0 & 0 \\ 1 & 1 \\ 2 & 2 \\ 0 & 3 \end{array}$	$= 2 \begin{vmatrix} 1 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 1 & 1 \\ 3 & 6 \end{vmatrix} = 6 \neq 0$

Do đó hạng của họ 4 vectơ đã cho bằng 4 = số chiếu của \mathbf{R}^4 Vậy 4 vectơ đó độc lập tuyến tính, chúng sinh ra cả \mathbf{R}^4 và lập nên một cơ sở của \mathbf{R}^4 .

d) Xét hạng của 4 vecto đã cho. Ta có

1	0	1	-2	h1
1	1	3	-2	h2
2	1	5	-1	h3
_1	-1	1	4	h4
1	0	1	-2	$h1 \rightarrow h1$
	1	2	0	$h2 - h1 \rightarrow h2$
	1	3	3	h3 - 2h1 → h3
	-1	Ø	6	$h4 - h1 \rightarrow h4$
1	0	1	-2	$hl \rightarrow hl$
	1	2	0	$h2 \rightarrow h2$
		1	3	h3 – h2 → h3
		2	6	h4 + h2 → h4
1	0	1	-2	$h1 \rightarrow h1$
	1	2	0	$h2 \rightarrow h2$
	· .	· 1	3	$h3 \rightarrow h3$
	<u> </u>	0	0	$h4 - 2h3 \rightarrow h4$

Bảng số cuối cùng này có ba hàng khác không.

Vậy hạng của 4 vectơ đã cho bằng 3. Bốn vectơ này sinh ra một không gian con của \mathbf{R}^4 có số chiều bằng 3 và nhận ba vectơ

(1, 0, 1, -2), (0, 1, 2, 0), (0, 0, 1, 3)

làm cơ sở.

5.30. Gọi W là tập các hàm $f \in C[a, b]$ khả vi trên [a, b] và thỏa mãn phương trình vi phân

f' + 4f = 0.

Rõ ràng $W \subset C[a,b]$: giả sử

 $f \in W, g \in W$

tức là

f' + 4f = 0, g' + 4g = 0.127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 216

Khi đó

$$(f' + g)' + 4(f + g) = f' + 4f + g' + 4g' = 0 + 0 = 0$$
$$(kf)' + 4(kf) = k(f' + 4f) = k0 = 0.$$

Vậy

$$f + g \in W$$
, $kf \in W$.

Do đó W là không gian con của C[a,b].

Nghiệm tổng quát của phương trình vi phân f' + 4f = 0 là

 $f = ce^{-4x}$, c = hằng tùy ý.

nghĩa là 👘

$$W = \{f \mid f = ce^{-4x}, c \text{ tùy } y\}$$

Vậy $u = e^{-4x}$ sinh ra W và độc lập tuyến tính. Cho nên không gian con W có số chiều bằng 1 và nhận $u = e^{-4x}$ làm cơ sở.

5.31. Néu
$$u = (u_1, u_2, ..., u_n) \in \mathbf{R}^n$$

 $v = (v_1, v_2, ..., v_n) \in \mathbf{R}^n$

thì tích vô hương Euclid của u, v trong \mathbf{R}^n là

$$< u, v > := u_1 v_1 + u_2 v_2 + ... + u_n v_n$$

và chuẩn Euclid của u là

$$||u|| := \sqrt{\langle u, u \rangle} = (u_1^2 + u_2^2 + ... + u_n^2)^{1/2}$$

Vây

1) a)
$$\langle u, v \rangle = 2(-1) + (-1).3 = -2 - 3 = -5$$

b) $\langle u, v \rangle = 0.7 + 0.2 = 0$
2) a) $||u|| = \sqrt{2^2 + (-1)^2} = \sqrt{5}$

 $\|v\| = \sqrt{(-1)^2} + 3^2 = \sqrt{10}$

Ta suy ra ·

$$||u|| ||v|| = \sqrt{5} \cdot \sqrt{10} = \sqrt{50}$$

 $|\langle u, v \rangle = |-5| < \sqrt{50}$

Vậy đúng là

b)

Do đó

 $|\langle u, v \rangle| \leq ||u|| . ||v|| .$ $||u|| = \sqrt{0^2 + 0^2} = 0$ $||v|| = \sqrt{7^2 + 2^2} = \sqrt{53} .$

$$||u|| . ||v|| = 0$$

 $|\langle u, v \rangle| = 0$

Vậy đúng là

 $|\langle u,v\rangle| \leq ||u|| . ||v||.$

5.32. 1) Ta phải kiểm tra 5 tiên để của tích vô hướng. Xét các phần tử bất kỉ của \mathcal{M}_2 :

$$u = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}, \quad v = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}, \quad w = \begin{bmatrix} w_1 & w_2 \\ w_3 & w_4 \end{bmatrix}$$

(i) $\langle u, v \rangle := u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$

là một số hoàn toàn xác định ;

(iii

(ii) $\langle u, v \rangle = \langle v, u \rangle$

vì

vì

$$\langle u + w, v \rangle = (u_1 + w_1) v_1 + (u_2 + w_2) v_2 + + (u_3 + w_3) v_3 + (u_4 + w_4) v_4 = (u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4) + + (w_1 v_1 + w_2 v_2 + w_3 v_3 + w_4 v_4)$$
(iv) $\langle ku, v \rangle = k \langle u, v \rangle, k \in \mathbf{R}$

br. ..

· 1 hav

٠

vì

$$= k(u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4)$$

= $k(u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4)$.
paded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

$$(\mathbf{v}) \quad \langle u, u \rangle \ge 0$$

vì

5

$$\langle u,u\rangle = u_1^2 + u_2^2 + u_3^2 + u_4^2 \ge 0.$$

Hơn nữa nếu

$$u = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

thì

$$\langle u, u \rangle = 0^2 + 0^2 + 0^2 + 0^2 = 0.$$

Ngược lại, nếu $\langle u,u \rangle = 0$ tức là nếu

$$u_1^2 + u_2^2 + u_3^2 + u_4^2 = 0$$

thì

$$u_1^2 = 0, \quad u_2^2 = 0, \quad u_3^2 = 0, \quad u_4^2 = 0,$$

tức là

$$u_1 = 0, \quad u_2 = 0, \quad u_3 = 0, \quad u_4 = 0$$

và

$$u = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Vây <u,v> := u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4 là một tích vô hướng trong \mathcal{M}_2

2) Áp dung

$$\langle u, v \rangle = (-1)1 + 2(0) + 6.3 + 1.3 = 20$$

3) Kiểm tra lại bất đẳng thức C-S

$$||u|| = \sqrt{(-1)^2 + 2^2 + 6^2 + 1^2} = \sqrt{42}$$
$$||v|| = \sqrt{1^2 + 6^2 + 3^2 + 3^2} = \sqrt{19}.$$

Ta suy ra

$$||u|| ||v|| = \sqrt{42} \sqrt{19} = \sqrt{790} > 28$$

 $|\langle u, v \rangle| = 20 < 28.$

Vậy đúng là

$$|\langle u,v\rangle| \leq ||u||.||v||.$$

5.33. 1) Ta phải kiểm tra 5 tiên để của tích vô hướng. Xét các phần từ bất kỉ của P_2 :

 $p = a_{o} + a_{1}x + a_{2}x^{2},$ $q = b_{o} + b_{1}x + b_{2}x^{2},$ $r = c_{o} + c_{1}x + c_{2}x^{2}.$ (i) $\langle p,q \rangle := a_{o}b_{o} + a_{1}b_{1} + a_{2}b_{2}$

là một số hoàn toàn xác định.

(ii)
$$\langle q, p \rangle = b_0 a_0 + b_1 a_1 + b_2 a_2$$

Do đó

$$\langle p,q \rangle = \langle q,p \rangle$$

(iii)

Do đó $\langle p,p \rangle \ge 0$

 $\langle p,p \rangle = 0 \Leftrightarrow a_o = a_1 = a_2 = 0.$

Vậy <p,q> = $a_o b_o + a_1 b_1 + a_2 b_2$ là một tích vô hướng trong P_2 . 2) Áp dụng

< p,q > = (-1).2 + 2.(0) + 1.(-4) = -6.127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 220

3) Kiểm tra lại bất đẳng thức C-S $||p|| = \sqrt{(-1)^2 + 2^2 + 1^2} = \sqrt{6}$ $||q|| = \sqrt{2^2 + 0^2 + (-4)^2} = \sqrt{20}$ $||p|| . ||q|| = \sqrt{6} \sqrt{20} = \sqrt{120}$ $|<p, q>| = |-6| = 6 < \sqrt{120}$

Đúng là

$$| < p,q > | \le ||p|| ||q||.$$
4) (i) $< p,q > := p(0) q(0) + p\left(\frac{1}{2}\right) q\left(\frac{1}{2}\right) + p(1)q(1)$

là một số hoàn toàn xác định

(ii)
$$\langle q,p \rangle = q(0) p(0) + q\left(\frac{1}{2}\right) p\left(\frac{1}{2}\right) + q(1) p(1) =$$

= $p(0) q(0) + p\left(\frac{1}{2}\right) q\left(\frac{1}{2}\right) + p(1) q(1) =$
= $\langle p,q \rangle$

(iii)

$$= (p + r) (0) q(0) + (p + r) \left(\frac{1}{2}\right) q \left(\frac{1}{2}\right) + (p + r) (1) q(1) =$$

$$= p(0) q(0) + p \left(\frac{1}{2}\right) q \left(\frac{1}{2}\right) + p(1) q(1) + r(0) q(0) + r \left(\frac{1}{2}\right) q \left(\frac{1}{2}\right) + r(1) q(1) =$$

$$= +$$
(iv)

$$< kp,q > = kp(0) q(0) + kp\left(\frac{1}{2}\right) q\left(\frac{1}{2}\right) + kp(1) q(1)$$

= $k(p(0) q(0) + p\left(\frac{1}{2}\right) q\left(\frac{1}{2}\right) + p(1) q(1))$
= $k < p, q > .$

(v)
$$\langle p, p \rangle = (p(0))^2 + \left(p\left(\frac{1}{2}\right)\right)^2 + (p(1))^2$$

nên

Vậy

$$\left\{ \begin{array}{ll} p(0) \ = \ 0 \ , \ p\left(\frac{1}{2}\right) \ = \ 0 \ , \ p(1) \ = \ 0 \right\} \Leftrightarrow \\ a_0 \ = \ 0 \ ; & \frac{1}{2}a_1 \ + \ \frac{1}{4}a_2 \ = \ 0 \ ; \\ a_1 \ + \ a_2 \ = \ 0 \\ \Leftrightarrow a_0 \ = \ 0 \ , \ a_1 \ = \ 0 \ , \ a_2 \ = \ 0 \Leftrightarrow p \ = \ 0 .$$

Ta thấy cả 5 tiên để của tích vô hướng đều thỏa mãn. Do đó

$$< p,q> := p(0)q(0) + p\left(\frac{1}{2}\right)q\left(\frac{1}{2}\right) + p(1)q(1)$$

cũng là một tích vô hướng trong P_2 .

5) Áp dụng : với p và q cho ở đầu bài ta có

$$p(0) = -1 \qquad p\left(\frac{1}{2}\right) = \frac{1}{4} \qquad p(1) = 2$$

$$q(0) = 2 \qquad q\left(\frac{1}{2}\right) = 1 \qquad q(1) = -2$$

$$p(1) = -2$$

Do đó

$$\langle p,q \rangle = (-1) \cdot 2 + \frac{1}{4} \cdot 1 + 2(-2) = -\frac{23}{4}.$$

6)
$$||p|| = \sqrt{(-1)^2 + (\frac{1}{4})^2 + 2^2} = \frac{9}{4}$$

 $||q|| = \sqrt{2^2 + 1^2 + (-2)^2} = 3$
 $||p|| \cdot ||q|| = \frac{9}{4} \cdot 3 = \frac{27}{4}$
 $|\langle p, q \rangle| = \frac{23}{4}$.

Vậy đúng là

5.34. a)
$$|\langle p, q \rangle| \le ||p|| .||q||$$

 $< u, v > := u_1v_1 + u_3v_3$

không thể là một tích vô hướng trong \mathbf{R}^3 vì chẳng hạn, tiên để (5) không thỏa mãn. Thực vậy,

$$\langle u, u \rangle = u_1^2 + u_3^2 \ge 0$$

nhưng nếu

 $u_1^2 + u_3^2 = 0$

thì chỉ suy ra $u_1 = 0$, $u_3 = 0$, còn u_2 tùy ý.

b)
$$\langle u,v \rangle := u_1^2 v_1^2 + u_2^2 v_2^2 + u_3^2 v_3^2$$

không thể là một tích vô hướng trong \mathbf{R}^3 vì chẳng hạn, tiên để (4) không thỏa mãn. Thực vậy

$$\langle ku, v \rangle = (ku_1)^2 v_1^2 + (ku_2)^2 v_2^2 + (ku_3)^2 v_3^2$$

$$= k^2 (u_1^2 v_1^2 + u_2^2 v_2^2 + u_3^2 v_3^2)$$

$$= k^2 \langle u, v \rangle.$$

$$\langle u, v \rangle := 2u_1 v_1 + u_2 v_2 + 4u_3 v_3$$

c)

có thể là một tích vô hướng trong \mathbf{R}^3 vì nó thỏa mãn 5 tiên đề của tích vô hướng (đề nghị bạn đọc kiểm tra lại).

d) $< u, v > := u_1 v_1 - u_2 v_2 + u_3 v_3$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

223

không thể là một tích vô hướng trong \mathbf{R}^3 vì chẳng hạn, tiên đề (5) không thỏa mãn. Thật vậy,

÷

$$\langle u, u \rangle = u_1^2 - u_2^2 + u_3^2 < 0$$

 $u_1 = 0, u_2 = -1, u_3 = 0$.

nếu 👘

5.35. Xét

$$u = \{a, b\}, \quad v = \{\cos\theta, \sin\theta\}$$

khi đó

$$\begin{aligned} \langle u, v \rangle &= a \cos \theta + b \sin \theta \\ |\langle u, v \rangle| &= |a \cos \theta + b \sin \theta| \\ ||u|| &= \sqrt{a^2 + b^2} \\ ||v|| &= \sqrt{\cos^2 \theta + \sin^2 \theta} = 1. \end{aligned}$$

Vậy bất đẳng thức C-S

$$< u, v > | \le ||u|| . ||v||$$

cho

$$|a\cos\theta + b\sin\theta| \leq \sqrt{a^2 + b^2}.$$

5.36. Xét

$$f = f(x) \in P_3, g = g(x) \in P_3, h = h(x) \in P_3.$$

Ta nhân thấy

(1)
$$\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) dx$$

là một số hoàn toàn xác định.

(2)
$$\langle g,f \rangle = \int_{-1}^{1} g(x) f(x) dx$$

 $= \int_{-1}^{1} f(x) g(x) dx = \langle f,g \rangle.$

(3)
$$\langle f + h, g \rangle = \int_{-1}^{1} (f(x) + h(x))g(x) dx =$$

$$= \int_{-1}^{1} f(x) g(x) dx + \int_{-1}^{1} h(x) g(x) dx =$$

$$= \langle f, g \rangle + \langle h, g \rangle.$$
(4) $\langle kf, g \rangle = \int_{-1}^{1} kf(x) g(x) dx =$

$$= k \int_{-1}^{1} f(x) g(x) dx = k \langle f, g \rangle.$$
(5) Ta có $\langle f, f \rangle = \int_{-1}^{1} [f(x)]^{2} dx.$

Vây

1)
$$[f(x)]^2 \ge 0 \Rightarrow \int_{-1}^{1} [f(x)]^2 dx \ge 0.$$

-1

Do đó luôn có $\langle f, f \rangle \ge 0$.

2)
$$f(x) = 0 + 0x + 0x^2 + 0x^3 \in P_3$$

thì

$$[f(x)]^2 = 0$$
 tại mọi x

$$\Rightarrow \int_{-1}^{1} [f(x)]^2 dx = 0 \Rightarrow \langle f, f \rangle = 0.$$

3) Nếu < f, f > = 0, tức là

$$\int_{-1}^{1} [f(x)]^2 dx = 0,$$

thì vì f(x) là một đa thức nên nó liên tục trên [-1,1], do đó tích phân trên bằng 0 buộc f(x) = 0 tại mọi $x \in [-1,1]$, tức là f(x) phải có dạng $f(x) = 0 + 0x + 0x^2 + 0x^3$.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 15-BT.TCC.T1 225 Như vậy là tiên để 5 cũng thỏa mãn.

Cả 5 tiên để về tích vô hướng đều thỏa mãn. Vậy

$$< f,g > := \int_{-1}^{1} f(x) g(x) dx$$

là một tích vô hướng trong P_3 .

Áp dụng :

a)
$$\langle f,g \rangle = \int_{-1}^{1} (1 - x + x^2 + 5x^3) (x - 3x^2) dx = -\frac{28}{15}$$

b)
$$\langle f,g \rangle = \int_{-1}^{1} (x - 5x^2) (2 + 8x^2) dx = -\frac{68}{3}$$

5.37. a) Ta muốn có

 $\langle u, v \rangle = 2 \cdot 1 + 1 \cdot 7 + 3 \cdot k = 0$

Vây k = -3.

b) Ta muốn có

$$\langle u,v \rangle = k.k + k.5 + 1.6 = 0,$$

tức là

 $k^2 + 5k + 6 = 0$

Vậy k = -2 và k = -3.

5.38. Ta có

$$\langle p, q \rangle = 1.0 - 1.2 + 2.1 = 0.$$

Vậy p và q trực giao theo tích vô hướng trong P_2 đã đình nghĩa ở bài tập 5.33.1.

5.39.

a)
$$< \begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix}$$
, $\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} > = -6 + 0 - 0 + 6 = 0$.
Vây $\begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix}$ trực giao với A.

b)
$$< \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
, $\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} > = 2 + 1 + 0 - 3 = 0$
Vây $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ trực giao với A.
c) $< \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} > = 0 + 0 + 0 + 0 = 0.$
Vậy ma trận "không" trực giao với A.
[2 - 1] [-2 - 1]

d)
$$< \begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix}$$
, $\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} > = 4 + 1 - 5 + 6 = 6 \neq 0$.
Vậy ma trận $\begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix}$ không trực giao với A.

5.40. Ta phải tìm vect
ơ $x = (x_1, x_2, x_3, x_4)$ của ${\bf R}^4$ thỏa mãn các điều kiện sau :

$$||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2} = 1$$

$$< x, u > = 2x_1 + x_2 - 4x_3 + 0 \cdot x_4 = 0$$

$$< x, v > = -x_1 - x_2 + 2x_3 + 2x_4 = 0$$

$$< x, w > = 3x_1 + 2x_2 + 5x_3 + 4x_4 = 0.$$

Trước hết ta giải hệ thuần nhất gồm ba phương trình cuối :

2	1	: -4	0	0	h1
-1	-1	2	2	0	h2
.3	2	5	4	0	h3
1	1	-2	-2	0	-h2 → h1
0	-1	0	4	0	$h1 + 2h2 \rightarrow h2$
0	-1	11	10	0	$h3 + 3h2 \rightarrow h3$
1	1	-2	-2	0	
	-1	0	4	0	
		11	6	. 0	$h3 - h2 \rightarrow h3$

Xem x_4 là tham số ta có

$$x_{3} = -\frac{6}{11}x_{4}$$

$$x_{2} = 4x_{4}$$

$$x_{1} = -x_{2} + 2x_{3} + 2x_{4} = -\frac{34}{11}x_{4}$$

Do đó điều kiện chuẩn hóa ||x|| = 1 viết

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = \left[\left(-\frac{34}{11} \right)^2 + 4^2 + \left(-\frac{6}{11} \right)^2 + 1^2 \right] x_4^2$$

= 3249 $x_4^2 = 1$

yêu cấu

$$x_4 = \pm \frac{1}{\sqrt{3249}} = \pm \frac{1}{57}$$

Vậy hai vectơ phải tìm là

$$x = \pm \frac{1}{\sqrt{57}} (-34, 44, -6, 11)$$

5.41. $||u + v||^2 = \langle u + v, u + v \rangle$
$$= ||u||^2 + 2\langle u, v \rangle + ||v||^2$$

 $||u - v||^2 = \langle u - v, u - v \rangle$
$$= ||u||^2 - 2\langle u, v \rangle + ||v||^2$$

Do đó

$$||u + v||^{2} + ||u - v||^{2} = 2(||u||^{2} + ||v||^{2})$$

$$||u + v||^{2} - ||u - v||^{2} = 4 < u, v >$$

Do đó

$$\langle u,v \rangle = \frac{1}{4} || u + v ||^2 - \frac{1}{4} || u - v ||^2$$

5.42. Xét $k \neq l$. Ta có

$$\langle f_k, f_l \rangle = \int_{0}^{\pi} \cos kx \cos kx dx =$$

$$= \int_{0}^{\pi} \frac{1}{2} \left[\cos(k+l) x + \cos(k-l) x \right] dx =$$

= $\frac{1}{2} \frac{\sin(k+l) x}{k+l} \Big|_{0}^{\pi} + \frac{1}{2} \frac{\sin(k-l) x}{k-l} \Big|_{0}^{\pi} = 0.$

Vậy nếu $k \neq l$ thì f_k trực giao với f_l , theo tích vô hướng định nghĩa bằng tích phân ở trên.

5.43. Theo tích vô hướng

$$< u, v > := 3u_1v_1 + 2u_2v_2$$

ta có 👘

$$\langle x,y \rangle = 3 \frac{1}{\sqrt{5}} \frac{2}{\sqrt{30}} + 2 \left(-\frac{1}{\sqrt{5}} \frac{3}{\sqrt{20}} \right) = 0.$$

Còn theo tích vô hướng Euclid thì

$$\langle x, y \rangle = \frac{1}{\sqrt{5}} \frac{2}{\sqrt{30}} - \frac{1}{\sqrt{5}} \frac{3}{\sqrt{30}} = -\frac{1}{\sqrt{150}} \neq 0$$

Vậy hai vectơ x và $y \in \mathbf{R}^2$ đã cho trực giao theo tích vô hướng, mới định nghĩa mà không trực giao theo tích vô hướng Euclid.

5.44. Kết luận ở đầu bài suy từ các kết quả sau :

$$\begin{aligned} &< u_1, u_2 > = 1.(-1) + 0.0 + 0.2 + 1.1 = 0, \\ &< u_1, u_3 > = 1.2 + 0.3 + 0.2 + 1(-2) = 0, \\ &< u_1, u_4 > = 1(-1) + 0.2 + 0.(-1) + 1.1 = 0, \\ &< u_2, u_3 > = -1.2 + 0.3 + 2.2 + 1.(-2) = 0, \\ &< u_2, u_4 > = (-1).(-1) + 0.2 + 2.(-1) + 1.1 = 0, \\ &< u_3, u_4 > = 2.(-1) + 3.2 + 2.(-1) + (-2).1 = 0. \end{aligned}$$

5.45. a) Cho trong \mathbf{R}^2

$$u_1 = (1, -3), u_2 = (2, 2).$$

Ta thấy :

$$\begin{vmatrix} 1 & -3 \\ 2 & 2 \end{vmatrix} = 8 \neq 0$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

229

Vậy $\{u_1, u_2\}$ độc lập tuyến tính, do đó là một cơ sở của \mathbf{R}^2 . Áp dụng quá trình trực chuẩn hóa G-S để được một cơ sở trực chuẩn của \mathbf{R}^2 . Ta có

$$||u_1|| = \sqrt{1+9} = \sqrt{10}.$$

Đặt

$$v_1 = \frac{1}{\sqrt{10}} u_1 = \frac{1}{\sqrt{10}} (1, -3) \Rightarrow ||v_1|| = 1$$

Tiếp tục đặt

 $w = \alpha v_1 + u_2, \alpha \in \mathbf{R}.$

và xác định α để $\langle w, v_1 \rangle = 0$

$$\langle w, v_1 \rangle = \langle \alpha v_1 + u_2, v_1 \rangle =$$

$$= \langle \alpha v_1, v_1 \rangle + \langle u_2, v_1 \rangle =$$

$$= \alpha + \langle u_2, v_1 \rangle$$

Vậy điều kiện $\langle w, v_1 \rangle = 0$ thỏa mãn khi

$$\alpha = -\langle u_2, v_1 \rangle$$

= $-\left[2 \cdot \frac{1}{\sqrt{10}} + 2 \cdot \frac{-3}{\sqrt{10}}\right] = \frac{4}{\sqrt{10}}$

Do đó

$$w = \frac{4}{\sqrt{10}} v_1 + u_2$$

= $\frac{4}{\sqrt{10}} \frac{1}{\sqrt{10}} (1, -3) + (2, 2)$
= $\left(\frac{24}{10}, \frac{8}{10}\right) = \frac{8}{10} (3, 1) = \frac{4}{5} (3, 1)$.
 $||w|| = \frac{4}{5}\sqrt{9 + 1} = \frac{4}{5}\sqrt{10}$

Đạt

3

$$v_2 = \frac{w}{\|w\|} = \frac{5}{4\sqrt{10}} \cdot \frac{4}{5} (3, 1) = \frac{1}{\sqrt{10}} (3, 1)$$

thì v_2 trực giao với v_1 và có chuẩn $|| v_2 || = 1$.

Họ $\{v_1, v_2\}$ là 1 cơ sở trực chuẩn của \mathbf{R}^2 .

Chú ý. Nếu đầu bài không yêu cầu áp dụng quá trình Gram-Smidt thì từ $u_1 = (1, -3)$ ta thấy ngay u = (3, 1) trực giao với u_1 vì

$$\langle u_1, u \rangle = 1.3 - 3.1 = 0.$$

Sau đó, chuẩn hóa u_1 và u

$$v_1 = \frac{u_1}{\|u_1\|}, v_2 = \frac{u}{\|u\|}$$

ta được ngay

$$v_1 = \frac{1}{\sqrt{10}} (1, -3)$$
 và $v_2 = \frac{1}{\sqrt{10}} (3, 1).$

Chúng trực giao vì

$$\langle v_1, v_2 \rangle = \frac{\langle u_1, u \rangle}{\| u_i \| \cdot \| u \|} = 0$$

và chuẩn hóa vì

$$||v_1|| = \frac{||u_1||}{||u_1||} = 1, ||v_2|| = \frac{||u||}{||u||} = 1.$$

Hai vecto v_1 và v_2 độc lập tuyến tính vì chúng trực giao, nên chúng tạo nên một cơ sở trực chuẩn trong \mathbf{R}^2 .

b) Cho $u_1 = (1, 0), u_2 = (3, -5) \in \mathbb{R}^2$.

Ta thấy định thức :

$$\begin{vmatrix} 1 & 0 \\ 3 & -5 \end{vmatrix} = -5 \neq 0.$$

Vậy { u_1 , u_2 } độc lập tuyến tính và do đó là một cơ sở của \mathbb{R}^2 . 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 231 Áp dụng quá trình trực chuẩn hóa G-S để được một cơ sở trực chuẩn của \mathbf{R}^2 . Ta có

$$|u_1|| = \sqrt{1^2 + 0^2} = 1.$$

Vậy u_1 đã chuẩn hóa. Ta đặt $v_1 = u_1$. Sau đó đặt

$$w = u_2 + tv_1$$

và tỉm t để w trực giao với v_1 . Ta có

$$0 = \langle w, v_1 \rangle = \langle u_2, v_1 \rangle + \langle tv_1, v_1 \rangle$$

= $\langle u_2, v_1 \rangle + t \langle v_1, v_1 \rangle$
= $\langle u_2, v_1 \rangle + t$.

Điều kiện $\langle w, v_1 \rangle = 0$ yêu cấu

$$t = -\langle u_2, v_1 \rangle = -[3.1 - 5.0] = -3.$$

Do đó

$$w = u_2 - 3v_1$$

$$w = (3, -5) - 3(1, 0) = (0, -5).$$

Bây giờ

$$|| w || = \sqrt{0^2 + (-5)^2} = 5$$
 ta đặt
 $v_2 = \frac{w}{|| w ||} = \frac{1}{5} (0, -5) = (0, -1).$

Vậy hai vectơ

 $v_1 = (1, 0), \quad v_2 = (0, -1)$

là 2 vecto trực giao và chuẩn hóa, chúng tạo thành một cơ sở trực chuẩn của \mathbf{R}^2 .

Chú ý. Nếu đầu bài không yêu cầu áp dụng quá trình Gram-Smidt thỉ từ $u_1 = (1, 0)$ ta thấy ngay u = (0, 1) là vectơ thứ hai trực giao với u_1 và đã chuẩn hóa rồi. Vì u_1 và u trực giao nên độc lập tuyến tính và chúng tạo nên một cơ sở trực chuẩn của \mathbf{R}^2 .

Như vậy cơ sở { v_1 , v_2 } và cơ sở { u_1 , u} hơi khác nhau một chút ở chỗ $u = -v_2$.

5.46. a) Ta có

$$|| u_1 || = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}.$$

Ta đặt

14'8' B18'

$$v_1 = \frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{3}} (1, 1, 1).$$

Ta lai có

$$\langle u_2, v_1 \rangle = \frac{1}{\sqrt{3}} (1.(-1) + 1.1 + 1.0) = 0,$$

tức là u_2 đã trực giao với v_1 rồi. Ta đặt

$$v_2 = \frac{u_2}{|| u_2 ||} = \frac{1}{\sqrt{(-1)^2 + 1^2}} (-1, 1, 0)$$
$$= \frac{1}{\sqrt{2}} (-1, 1, 0).$$

Như vậy ta đã có v_1 và v_2 trực giao và chuẩn hóa. Bây giờ ta tìm vecto thứ ba trực giao với v_1 , v_2 và chuẩn hóa. Ta đặt

$$w = u_3 + tv_1 + sv_2, \quad t, s \in \mathbf{R}$$

và xác định t và s. Từ

$$0 = \langle w, v_1 \rangle = \langle u_3, v_1 \rangle + t \langle v_1, v_1 \rangle + s \langle v_2, v_1 \rangle$$

= $\langle u_3, v_1 \rangle + t$,

ta suy ra

$$t = -\langle u_3, v_1 \rangle = -\frac{4}{\sqrt{3}}$$

Τừ

0

$$= \langle w, v_2 \rangle = \langle u_3, v_2 \rangle + t \langle v_1, v_2 \rangle + s \langle v_2, v_2 \rangle$$

 $= \langle u_3, v_2 \rangle + s,$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

233

ta suy ra

$$s = -\langle u_3, v_2 \rangle = -\frac{1}{\sqrt{2}}$$

Do đó

$$w = u_3 + tv_1 + sv_2 =$$

= (1, 2, 1) - $\frac{4}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}\right)$ (1, 1, 1) - $\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}\right)$ (-1, 1, 0) =
= $\left(\frac{1}{6}, \frac{1}{6}, -\frac{1}{3}\right) = \frac{1}{6}$ (1, 1; -2).

Ta có

$$\| w \| = \frac{1}{6} \sqrt{1^2 + 1^2 + (-2)^2} = \frac{1}{\sqrt{6}}$$

Ta đặt

$$v_3 = \frac{w}{||w||} = \sqrt{6} \cdot \frac{1}{6} (1, 1, -2)$$
$$= \frac{1}{\sqrt{6}} (1, 1, -1).$$

Cuối cùng ta được ba vecto

$$v_1 = \frac{1}{\sqrt{3}} (1, 1, 1),$$

$$v_2 = \frac{1}{\sqrt{2}} (-1, 1, 0),$$

$$v_3 = \frac{1}{\sqrt{6}} (1, 1, 2)$$

trực giao và chuẩn hóa, tạo thành một cơ sở trực chuẩn của \mathbb{R}^3 .

b) Ta có $u_1 = (1, 0, 0)$ đã chuẩn hóa vì

$$|| u_1 || = \sqrt{1^2 + 0^2 + 0^2} = 1$$

Ta đặt $v_1 = u_1 = (1, 0, 0).$

Sau đó ta lại nhận thấy

$$\langle v_1, u_3 \rangle = 1.0 + 0.4 + 0.1 = 0$$

tức là u_3 đã trực giao với v_1 , nên ta đặt luôn

$$v_2 = \frac{u_3}{||u_3||} = \frac{u_3}{\sqrt{0^2 + 4^2 + 1^2}} = \frac{1}{\sqrt{17}} \ (0, \ 4, \ 1).$$

Bây giờ ta tìm vectơ thứ ba trực giao với v_1 và $v_2.$ Ta đặt

$$w = u_2 + tv_1 + sv_2, \quad t, s \in \mathbf{R}$$

Τừ

°,8.1

$$0 = \langle w, v_1 \rangle = \langle u_2 + tv_1 + sv_2, v_1 \rangle$$

= $\langle u_2, v_1 \rangle + t \langle v_1, v_1 \rangle + s \langle v_2, v_1 \rangle$
= $\langle u_2, v_1 \rangle + t$

ta suy ra

$$t = -< u_2, \ v_1 > = -3.$$

Τừ

ļ

$$0 = \langle w, v_2 \rangle = \langle u_2 + tv_1 + sv_2, v_2 \rangle$$

= $\langle u_2, v_2 \rangle + t \langle v_1, v_2 \rangle + s \langle v_2, v_2 \rangle$
= $\langle u_2, v_2 \rangle + s$

ta suy ra

$$s = -\langle u_2, v_2 \rangle = -\frac{26}{\sqrt{17}}$$

Vậy

$$w = u_2 + tv_1 + sv_2$$

= (3, 7, -2) - 3(1, 0, 0) - $\frac{26}{\sqrt{17}} \frac{1}{\sqrt{17}}$ (0, 4, 1)
= $\frac{1}{17}$ (0, 15, -60).

Υ**λ**х

Vì

$$||w|| = \frac{1}{17}\sqrt{15^2 + 60^2} = \frac{\sqrt{3825}}{17}$$

nên ta đặt

$$v_3 = \frac{w}{\|w\|} = \frac{17}{\sqrt{3825}} \frac{1}{17} (0, 15, -60)$$
$$= \frac{1}{\sqrt{3825}} (0, 15, -60).$$

Cuối cùng ta được ba vectơ

$$v_1 = (1, 0, 0),$$

$$v_2 = \frac{1}{\sqrt{17}} (0, 4, 1),$$

$$v_3 = \frac{1}{\sqrt{3825}} (0, 15, -60)$$

trực giao và chuẩn hóa, tạo thành một cơ sở trực chuẩn của ${f R}^3$.

Chúý. Nếu sử dụng tuần tự u_1 rồi u_2 rồi mới đến u_3 trong quá trình trực giao hóa Gram-Smidt thỉ sẽ được ba vecto trực chuẩn không nhất thiết trùng với ba vecto trên. Đó là

(1, 0, 0),
$$\left(0, \frac{7}{\sqrt{53}}, -\frac{2}{\sqrt{53}}\right)$$
, $\left(0, \frac{30}{\sqrt{11925}}, \frac{105}{\sqrt{11925}}\right)$
5.47 Dat $u_1 = (0, 1, 2)$, $u_2 = (-1, 0, 1)$.

Ta phải xây dựng hai vecto trực chuẩn là tổ hợp tuyến tính của u_1 và u_2 .

Ta có

$$||u_1|| = \sqrt{0^2 + 1^2 + 2^2} = \sqrt{5}$$

Ta đặt

$$v_1 = \frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{5}} (0, 1, 2)$$

Bây giờ ta tìm t để

$$w = u_2 + t v_1.$$

true giao vôi v_1 . Từ $\begin{aligned} 0 &= \langle u, v_1 \rangle = \langle u_2 + t v_1, v_1 \rangle \\ &= \langle u_2, v_1 \rangle + t \langle v_1, v_1 \rangle = \langle u_2, v_1 \rangle + t \end{aligned}$

ta suy ra

9,9

$$t = -\langle u_2, v_1 \rangle = -\frac{2}{\sqrt{5}}$$

Do đó

$$w = u_2 - \frac{2}{\sqrt{5}} v_1$$

= (-1, 0, 1) - $\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}}$ (0, 1, 2)
= $\frac{1}{\sqrt{5}}$ (-5, -2, 1).

Vì

$$||w|| = \frac{1}{5}\sqrt{25 + 4 + 1} = \frac{1}{5}\sqrt{30}$$

nên ta đặt

$$v_2 = \frac{w}{\|\|w\|} = \frac{5}{\sqrt{30}} \frac{1}{5} (-5, -2, 1) =$$
$$= \frac{1}{\sqrt{30}} (-5, -2, 1).$$

Tóm lại hai vectơ

Ш

$$v_1 = \frac{1}{\sqrt{5}} (0, 1, 2)$$
 và $v_2 = \frac{1}{\sqrt{30}} (-5, -2, 1)$

tạo thành một cơ sở trực chuẩn của không gian con của \mathbb{R}^3 sinh bởi hai vectơ u_1 và u_2 .

5.48. Ta có theo tích vô hướng định nghĩa ở đầu bài

$$\begin{aligned} u_1 \| &= \sqrt{\langle u_1, u_1 \rangle} \\ &= \sqrt{1 \cdot 1 + 2(1 \cdot 1) + 3(1 \cdot 1)} = \sqrt{6} \end{aligned}$$

Ta đặt

$$v_1 = \frac{u_1}{||u_1||} = \frac{1}{\sqrt{6}} (1, 1, 1)$$

Bây giờ tìm

 $w = u_2 + tv_1, t \in \mathbf{R}$

trực giao với v₁. Từ

$$\begin{array}{l} 0 \ = \ < w \ , \ v_1 > \ = \ < u_2 \ + \ t \ v_1 \ , \ v_1 > \\ \\ \ = \ < u_2 \ , \ v_1 > \ + \ t < v \ , \ v_1 > \\ \\ \ = \ < u_2 \ , \ v_1 > \ + \ t \end{array}$$

ta suy ra

$$t = -\langle u_2, v_1 \rangle = -\frac{1}{\sqrt{6}} (1 \cdot 1 + 2 \cdot 1 \cdot 1 + 3 \cdot 0 \cdot 1) = \frac{-3}{\sqrt{6}}$$

và có

$$w = u_2 - \frac{3}{\sqrt{6}}v_1 = \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right) = \frac{1}{2}(1, 1, -1)$$

vì

$$||w|| = \frac{1}{2}\sqrt{1.1 + 2.1.1 + 3(-1)(-1)} = \frac{1}{2}\sqrt{6}$$

nên ta đặt

$$v_2 = \frac{w}{||w||} = \frac{2}{\sqrt{6}} \frac{1}{2} (1, 1, -1) = \frac{1}{\sqrt{6}} (1, 1, -1)$$

Bây giờ tìm v_3 . Ta đặt

 $w = u_3 + tv_1 + sv_2, \quad t, s \in \mathbf{R}$

và xác định t và s để w trực giao với v_1 và v_2 .

Τừ

$$0 = \langle w, v_1 \rangle = \langle u_3 + tv_1 + sv_2, v_1 \rangle$$

= $\langle u_3, v_1 \rangle + t \langle v_1, v_1 \rangle + s \langle v_2, v_1 \rangle$
= $\langle u_3, v_1 \rangle + t$,

'ta suy ra

810.

$$t = -\langle u_3, v_1 \rangle = -\frac{1}{\sqrt{6}} \left[1.1 + 2.0.1 + 3.0.(-1) \right]$$
$$= -\frac{1}{\sqrt{6}}$$

Τừ

$$\begin{array}{l} = = < u_3 \, + \, tv_1 \, + \, sv_2, \, v_2 > \\ = < u_3, \, v_2 > \, + \, t < v_1, \, v_2 > \, + \, s < v_2, \, v_2 > \\ = < u_3, \, v_2 > \, + \, s \end{array}$$

ta suy ra

$$s = -\langle u_3, v_2 \rangle = -\frac{1}{\sqrt{6}}$$

Vậy

$$w = u_3 + tv_1 + sv_2$$

= (1, 0, 0) - $\frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}}$ (1, 1, 1) - $\frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}}$ (1, 1, -1)
= $\frac{1}{6}$ (4, -2, 0) = $\frac{1}{3}$ (2, -1, 0).

Vì

$$||w|| = \frac{1}{3}\sqrt{2^2 + 2(-1)^2} = \frac{\sqrt{6}}{3}$$

nên ta đặt

$$v_3 = \frac{w}{||w||} = \frac{3}{\sqrt{6}} \frac{1}{3} (2, -1, 0) = \frac{1}{\sqrt{6}} (2, -1, 0).$$

Cuối cùng, ta được ba vectơ

$$v_1 = \frac{1}{\sqrt{6}} (1, 1, 1),$$

$$v_1 = \frac{1}{\sqrt{6}} (1, 1, -1),$$

$$v_3 = \frac{1}{\sqrt{6}} (2, -1, 0),$$

tạo thành một cơ sở trực chuẩn của **R**³. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

239

5.49. Tà chú ý rằng với tích vô hướng Euclid trong \mathbb{R}^3 ta có $\langle u_1, u_2 \rangle = 0$, nghĩa là u_1 và u_2 trực giao.

Theo định lí 5.6.6 trong Thcc/1 ta có

 $w = w_1 + w_2$

trong đó

$$w_1 = \langle w, u_1 \rangle u_1 + \langle w, u_2 \rangle u_2$$

 $w_2 = w - w_1$.

Vì

 $< w, u_1 > = -1, < w, u_2 > = 2$

nên

$$w_1 = -u_1 + 2u_2 = \left(-\frac{4}{5}, 2, \frac{3}{5}\right)$$
$$w_2 = w - w_1 = \left(\frac{9}{5}, 0, \frac{12}{5}\right).$$

5.50. Đặt

$$u_1 = 1, \quad u_2 = x, \quad u_3 = x^2$$

Ta có

$$|| u_1 || = \sqrt{\int_{-1}^{1} 1^2 dx} = \sqrt{2}$$

nên đặt

$$v_1 = \frac{u_1}{\sqrt{2}} = \frac{1}{\sqrt{2}};$$

Ta lại cơ

$$\langle v_1, u_2 \rangle = \int_{-1}^{1} \frac{1}{\sqrt{2}} x dx = 0$$

tức là u_2 trực giao với v_1 . Ta tính

$$||u_2|| = \sqrt{\int_{-1}^{1} x^2 dx} = \sqrt{\frac{2}{3}}$$

và đặt

<u>े</u> के

$$v_2 = \frac{u_2}{\|u_2\|} = \sqrt{\frac{3}{2}} x.$$

Ta đã được hai vect
ơ v_1 và v_2 trực giao và chuẩn hóa. Bây giờ ta tìm vect
ơ thứ ba. Ta xác định $t,\ s\in {\bf R}$ sao cho

$$w = u_3 + tv_1 + sv_2$$

trực giao với v_1 và v_2 . Từ

$$0 = \langle w, v_1 \rangle = \langle u_3, v_1 \rangle + t \langle v_1, v_1 \rangle + s \langle v_1, v_2 \rangle$$
$$= \langle u_3, v_1 \rangle + t$$

ta suy ra

$$t = -\langle u_3, v_1 \rangle = -\int_{-1}^{1} x^2 \cdot \frac{1}{\sqrt{2}} dx = \frac{-2}{3\sqrt{2}}$$

Τù

$$0 = \langle w, v_2 \rangle = \langle u_3, v_2 \rangle + t \langle v_1, v_2 \rangle + s \langle v_2, v_2 \rangle$$

ta suy ra

$$s = -\langle u_3, v_2 \rangle = -\int_{-1}^{1} x^2 \sqrt{\frac{3}{2}} x dx = 0$$

Vậy

$$w = u_3 + tv_1 = x^2 - \frac{2}{3\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = x^2 - \frac{1}{3} \cdot \frac{1}{\sqrt{2}}$$

Vì

$$||w||^2 = \sqrt{\int_{-1}^{1} (x^2 - \frac{1}{3})^2 dx} = \sqrt{\frac{8}{9} \cdot \frac{1}{5}} = \frac{\sqrt{8}}{\sqrt{5}} \frac{1}{3}.$$

nên ta đặt

$$v_3 = \frac{w}{\|w\|} = \frac{3\sqrt{5}}{\sqrt{8}} \left(x^2 - \frac{1}{3}\right).$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 16-BT.TCC.T1 241

Vậy từ cơ sở { 1, x, x^2 } của P_2 , áp dụng quá trình trực giao hóa Gram-Smidt ta đã suy ra 1 cơ sở trực chuẩn của P_2 là

$$\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} x, \frac{3\sqrt{5}}{\sqrt{8}} \left(x^2 - \frac{1}{3}\right)\right\}.$$

5.51. (a) (3, -7) = (3, 0) + (0, -7) = 3(1, 0) + (-7) (0, 1)
= 3u_1 - 7u_2.

Vậy

$$(w)_S = (3, -7), \quad [w]_S = \begin{bmatrix} 3\\ -7 \end{bmatrix}$$

(b) Ta viết

$$w = \alpha u_1 + \beta u_2$$
(1, 1)

$$= \alpha (2, -4) + \beta (3, 8)$$

$$= (2\alpha + 3\beta, -4\alpha + 8\beta).$$
Do đó

$$\begin{cases} 2\alpha + 3\beta = 1\\ -4\alpha + 8\beta = 1 \end{cases}.$$

Ta suy ra
$$\alpha = \frac{5}{28}, \quad \beta = \frac{3}{14}.$$

Do đó

$$(w)_{S} = \left(\frac{5}{28}, \frac{3}{14}\right), \quad [w]_{S} = \begin{bmatrix} 5/28\\3/14 \end{bmatrix}$$
(c) $(a, b) = \alpha(1, 1) + \beta(0, 2)$
 $= (\alpha, \alpha + 2\beta).$
Vây có
$$\begin{cases} \alpha = a\\ \alpha + 2\beta = b. \end{cases}$$
Do đó

Ð

$$\dot{\alpha} = a, \beta = (b - a)/2.$$

Vây có

$$(w)_S = (a, (b - a)/2), [w]_S = \begin{vmatrix} a \\ (b - a)/2 \end{vmatrix}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

5.52. a)
$$(2, -1, 3) = \alpha(1, 0, 0) + \beta(2, 2, 0) + \gamma(3, 3, 3)$$

= $(\alpha + 2\beta + 3\gamma, 2\beta + 3\gamma, 3\gamma)$.

Do đó

5.00

$$\alpha + 2\beta + 3\gamma = 2$$

$$2\beta + 3\gamma = -1$$

$$3\gamma = 3$$

Vậy có

 $\gamma = 1, \beta = -2, \alpha = 3.$

Cho nên có

$$w = 3u_1 - 2u_2 + u_3$$

$$(w)_S = (3, -2, 1), \quad [w]_S = \begin{bmatrix} 3\\ -2\\ 1 \end{bmatrix}.$$
b) (5, -12, 3) = $\alpha(1, 2, 3) + \beta(-4, 5, 6) + \gamma(7, -8, 9)$

$$= (\alpha - 4\beta + 7\gamma, 2\alpha + 5\beta - 8\gamma, 3\alpha + 6\beta + 9\gamma)$$

Do đó

$$\begin{vmatrix} \alpha - 4\beta + 7\gamma = 5\\ 2\alpha + 5\beta - 8\gamma = -12\\ 3\alpha + 6\beta + 9\gamma = 3 \end{vmatrix}$$

Ta suy ra

 $\alpha = -2, \quad \beta = 0, \quad \gamma = 1,$

nghĩa là

$$w = -2u_1 + u_3$$

Vậy có

$$(w)_S = (-2, 0, 1), \quad [w]_S = \begin{bmatrix} -2\\0\\1 \end{bmatrix}$$

5.53.

$$\begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix} = \alpha \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + \beta \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \delta \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -\alpha + \beta & \alpha + \beta \\ \gamma & \delta \end{bmatrix}$$

۰.

Ta suy ra

$$\begin{cases} \neg \alpha + \beta = 2\\ \alpha + \beta = 0\\ \gamma = -1\\ \delta = 3 \end{cases}$$

Do đó

$$\delta = 3, \gamma = -1, \beta = 1, \alpha = -1.$$

Vậy có

$$(A)_B = (-1, 1, -1, 3), \quad [A]_B = \begin{bmatrix} -1\\ 1\\ -1\\ 3 \end{bmatrix}.$$

5.54.

$$4 - 3x + x^2 = 4p_1 - 3p_2 + 1p_3$$

Vậy có

$$(p)_B = (4, -3, 1), \quad [p]_B = \begin{bmatrix} 4\\ -3\\ 1 \end{bmatrix}.$$

5.55. (a) Ta có : u_1 và u_2 trực giao và đã chuẩn hóa, và

$$\langle w, u_1 \rangle = \frac{3}{\sqrt{2}} - \frac{7}{\sqrt{2}} = -\frac{4}{\sqrt{2}} = -2\sqrt{2}$$
$$\langle w, u_2 \rangle = \frac{3}{\sqrt{2}} + \frac{7}{\sqrt{2}} = \frac{10}{\sqrt{2}} = 5\sqrt{2} .$$

Theo dinh li 5.6.5 trong Thcc/1 ta có :

$$(w)_{S} = (-2\sqrt{2}, 5\sqrt{2}), \quad [w]_{S} = \begin{bmatrix} -2\sqrt{2} \\ 5\sqrt{2} \end{bmatrix}$$

với $S = \{u_{1}, u_{2}\}.$

(b) Ba vecto u_1 , u_2 , u_3 cho ở đầu bài trực giao và chuẩn hóa và $\langle w, u_1 \rangle = 0$ $\langle w, u_2 \rangle = -2$

$$<\omega, \ \omega_2 > -2$$

 $<\omega, \ \omega_3 > = 1$

Vậy theo định lí 5.6.5 trong Thcc/1 ta có

 $w = \langle w, u_1 \rangle u_1 + \langle w, u_2 \rangle u_2 + \langle w, u_3 \rangle u_3$ $w = -2u_2 + u_3$

Vậy có

(B.6.0)

$$(w)_{S} = (0, -2, 1), \quad [w]_{S} = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$

5.56.

(a)
$$\langle w_1, w_2 \rangle = \frac{3}{5} \cdot \frac{4}{5} - \frac{4}{5} \cdot \frac{3}{5} = 0$$

 $||w_1|| = \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = 1$
 $||w_2|| = \sqrt{\left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2} = 1$

Vậy $S = \{ w_1, w_2 \}$ là một cơ sở trực chuẩn của \mathbb{R}^2 . (b) Do đó $(u)_S = (1, 1)$ và $(v)_S = (-1, 4)$ có nghĩa là

 $u = w_1 + w_2, \quad v = -w_1 + 4w_2.$

Ta suy ra

$$|| u ||^{2} = || w_{1} ||^{2} + || w_{2} ||^{2} = 1 + 1 = 2$$

$$|| u || = \sqrt{2}$$

$$u - v = (w_{1} + w_{2}) - (-w_{1} + 4w_{2}) = 2w_{1} - 3w_{2};$$

$$|| u - v ||^{2} = 4 || w_{1} ||^{2} + 9 || w_{2} ||^{2} = 13;$$

$$d (u, v) = || u - v || = \sqrt{13};$$

$$< u, v > = < w_{1} + w_{2}, -w_{1} + 4w_{2} >$$

$$= - < w_{1}, w_{1} > + 3 < w_{1}, w_{2} > + 4 < w_{2}, w_{2} >$$

< u, v > = 3.

(c)
$$u = w_1 + w_2 = \left(\frac{3}{5}, -\frac{4}{5}\right) + \left(\frac{4}{5}, \frac{3}{5}\right)$$

 $= \left(\frac{7}{5}, -\frac{1}{5}\right);$
 $v = -w_1 + 4w_2 = \left(-\frac{3}{5}, \frac{4}{5}\right) + \left(\frac{16}{5}, \frac{12}{5}\right)$
 $= \left(\frac{13}{5}, \frac{16}{5}\right);$
 $|| u ||^2 = \left(\frac{7}{5}\right)^2 + \left(\frac{1}{5}\right)^2 = \frac{50}{25} = 2;$
 $|| u || = \sqrt{2};$
 $u - v = \left(\frac{7}{5}, -\frac{1}{5}\right) - \left(\frac{13}{5}, \frac{16}{5}\right) = \left(-\frac{6}{5}, -\frac{17}{5}\right);$
 $|| u - v ||^2 = \left(\frac{6}{5}\right)^2 + \left(\frac{17}{5}\right)^2 = 13;$
 $d (u, v) = || u - v || = \sqrt{13};$
 $< u, v > = \frac{7}{5}, \frac{13}{5} - \frac{1}{5}, \frac{16}{5} = 3.$

5.57. Xem Thcc/1 trang 280 - 281.

a) Ở đây B là cơ sở chính tắc. Do đó ma trận chuyển cơ sở từ B sang B' là

$$P = \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix}$$
$$[w]_B = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$

b)

Mặt khác

$$[w]_{B} = P^{-1} [w]_{B}$$

Vì det(P) = 11 nên

$$P^{-1} = \frac{1}{11} \begin{bmatrix} 4 & 3 \\ -1 & 2 \end{bmatrix}$$

·do đó

8,8°

$$[w]_{B'} = \frac{1}{11} \begin{bmatrix} 4 & 3\\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3\\ -5 \end{bmatrix} = \begin{bmatrix} -3/11\\ -13/11 \end{bmatrix}$$

(c) Tinh [w]_B, trực tiếp

$$\begin{bmatrix} 3\\-5 \end{bmatrix} = \alpha \begin{bmatrix} 2\\1 \end{bmatrix} + \beta \begin{bmatrix} -3\\4 \end{bmatrix}$$

Do đó α và β là nghiệm của hệ

$$\begin{cases} 2\alpha - 3\beta = 3\\ \alpha + 4\beta = -5 \end{cases}$$

Giải hệ này ta được $\alpha = -3/11$, $\beta = -13/11$. Vậy có

$$[w]_{B'} = \begin{bmatrix} -3/11\\ -13/11 \end{bmatrix}$$

(d) Ở câu (b) ta đã tìm ra ma trận chuyển cơ sở từ B' sang
 B. Đó là

$$\mathbf{P}^{-1} = \frac{1}{11} \begin{bmatrix} 4 & 3\\ -1 & 2 \end{bmatrix}$$

Ta có thể tính trực tiếp ma trận chuyển cơ sở đó bằng cách biểu diễn u_1 và u_2 theo cơ sở $B' = \{v_1, v_2\}$.

Ta có

$$\begin{bmatrix} 1\\0 \end{bmatrix} = \alpha \begin{bmatrix} 2\\1 \end{bmatrix} + \beta \begin{bmatrix} -3\\4 \end{bmatrix}$$
$$\begin{bmatrix} 2\alpha - 3\beta = 1\\\alpha + 4\beta = 0 \end{bmatrix}$$

Giải hệ này ta được $\alpha = \frac{4}{11}$, $\beta = -\frac{1}{11}$

Vậy

$$[u_1]_{B'} = \begin{bmatrix} 4/11 \\ -1/11 \end{bmatrix}$$

Mặt khác

$$\begin{bmatrix} 0\\1 \end{bmatrix} = \alpha \begin{bmatrix} 2\\1 \end{bmatrix} + \beta \begin{bmatrix} -3\\4 \end{bmatrix}$$
$$\begin{bmatrix} 2\alpha - 3\beta = 0\\\alpha + 4\beta = 1 \end{bmatrix}$$

Giải hệ này ta được $\alpha = 3/11$, $\beta = 2/11$. Vậy $[u_2]_{B'} = \begin{bmatrix} 3/11\\2/11 \end{bmatrix}$

Do đó ma trận chuyển cơ sở từ B' sang B là

$$Q = \begin{bmatrix} 4/11 & 3/11 \\ -1/11 & 2/11 \end{bmatrix}$$

trùng với P^{-1} .

5.58. Xem Thcc/1 trang 280 - 281. (a) $v_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \alpha \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 4 \\ -1 \end{bmatrix}$

Do đó

$$\begin{cases} 2\alpha + 4\beta = 1 \\ 2\alpha - \beta = 3 \end{cases}$$

Giải hệ này ta được

$$\alpha = \frac{13}{10}, \quad \beta = -\frac{2}{5}.$$

Vậy

$$[v_1]_B = \begin{bmatrix} 13/10\\ 2/5 \end{bmatrix}$$

Ta lại viết

$$\nu_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \alpha \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

Do đố

$$2\alpha + 4\beta = -1$$
$$2\alpha - \beta = -1$$

Giải hệ này ta được

 $\alpha = -1/2, \beta = 0$

Vậy

9,9,

$$[\nu_2]_B = \begin{bmatrix} -1/2 \\ 0 \end{bmatrix}.$$

Ta thu được

$$P = \begin{bmatrix} 13/10 & -1/2 \\ -2/5 & 0 \end{bmatrix}$$

(b) Bây giờ ta tính $[w]_B$ và $[w]_B$. Ta có
$$w = \begin{bmatrix} 3 \\ -5 \end{bmatrix} = \alpha \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

Do đó

$$\begin{cases} 2\alpha + 4\beta = 3\\ 2\alpha - \beta = -5 \end{cases}$$

Giải hệ này ta được

$$\alpha = -17/10, \quad \beta = 8/5$$

Vậy có

$$[w]_B = \begin{bmatrix} -17/10\\ 8/5 \end{bmatrix}$$

Mặt khác

$$[w]_{B'} = P^{-1} [w]_{B'}$$

Ta thấy

$$\det(P) = -\frac{1}{5} \neq 0,$$

ta suy ra

$$P^{-1} = -5 \begin{bmatrix} 0 & 1/2 \\ 2/5 & 13/10 \end{bmatrix}$$

Do đó

 $[w]_{B'} = P^{-1}[w]_{B} = -5 \begin{bmatrix} 0 & 1/2 \\ 2/5 & 13/10 \\ 127.0.0.1 \text{ downloaded } 60383.\text{pdf at} \begin{bmatrix} -17/10 \\ 8/5 \\ 100 \end{bmatrix} = \begin{bmatrix} -4 \\ -7 \\ 08:30:19 \end{bmatrix}$

249

(c) Tính [w]_R, trực tiếp

$$w = \begin{bmatrix} 3 \\ -5 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Ta suy ra 🗉

$$\begin{array}{rcl}
\alpha & -\beta &= & 3 \\
3\alpha & -\beta &= & -5
\end{array}$$

Do đó $\alpha = -4$, $\beta = -7$. Vậy

$$[w]_{B^*} = \begin{bmatrix} -4\\ -7 \end{bmatrix}$$

(d) Ở câu (b) ta đã tìm ra ma trận chuyển cơ sở từ B' sang B. Đó là P^{-1} . Bạn đọc có thể tính trực tiếp ma trận chuyển cơ sở đó như ở câu (d) bài tập 5.57.

5.59. Xem Thcc/1 trang 280 - 281

(a) Tìm ma trận chuyển cơ sở P từ B' sang B. Ta có nhận xét chung sau :

$$P = [[u_1]_{B'} \ [u_2]_{B'} \ [u_3]_{B'}]$$

Đạt

$$[u_1]_{B^*} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}, \quad [u_2]_{B^*} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}, \quad [u_3]_{B^*} = \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{bmatrix}$$

thì cơ

(3.4)
$$\begin{cases} \alpha_1 [v_1] + \alpha_2 [v_2] + \alpha_3 [v_3] = [u_1] \\ \beta_1 [v_1] + \beta_2 [v_2] + \beta_3 [v_3] = [u_2] \\ \gamma_1 [v_1] + \gamma_2 [v_2] + \gamma_3 [v_3] = [u_3] \end{cases}$$

Ở đây kí hiệu [w] chỉ ma trận cột của $w \in \mathbf{R}^3$, chẳng hạn như nếu w = (3, -1, 2) thì

$$[w] = \begin{bmatrix} 3\\ -1\\ 2 \end{bmatrix}$$

Hệ (3.4) có thể viết

(3.4')
$$[[v_1] \ [v_2] \ [v_3]] \begin{bmatrix} \alpha_1 \ \beta_1 \ \gamma_1 \\ \alpha_2 \ \beta_2 \ \gamma_2 \\ \alpha_3 \ \beta_3 \ \gamma_3 \end{bmatrix} = [[u_1] \ [u_2] \ [u_3]]$$

Như vậy $(\alpha_1, \alpha_2, \alpha_3)$, $(\beta_1, \beta_2, \beta_3)$, $(\gamma_1, \gamma_2, \gamma_3)$ là những nghiệm của ba hệ tuyến tính có cùng ma trận hệ số là

$$[[v_1] [v_2] [v_3]]$$

với ba vế phải là $[u_1]$, $[u_2]$ và $[u_3]$.

Ta có thể giải ba hệ đó bằng phương pháp Gauss cùng một lúc trong cùng một bảng.

Ta cũng có thể xem hệ (3.4)ở dạng (3.4') là phương trình ma trận

$$[[v_1] \ [v_2] \ [v_3]] \ P = [[u_1] \ [u_2] \ [u_3]]$$

Giải phương trình ma trận này ta được ma trận P. Nây giờ ta áp dụng vào bài tập 5.59. a). Ta phải giải hệ

	-6	-2	-2	P =	[-3	.– 3	1]
	-6	- 6	-3	P =	0	2	6
	0	4	7		-3	1	-1
1	L				L		

Ta giải bằng phương pháp Gauss-Jordan. Để tránh nhiều dấu -, ta đổi dấu hai vế

						í
6	2	2	3	3	-1	hl
6	6	3	0	-2	-6	h2
0	4	-7	3	-1	1	h3
6	. 2	2	3	. 3	-1	$h1 \rightarrow h1$
	4	1	-3	-5	-5	$h2 - h1 \rightarrow h2$
	-4	-7	3	-1	1	$h3 \rightarrow h3$
6	2	2	3	- 3	-1.	h1 → h1
	4	1 ·	-3	-5	-5	$h2 \rightarrow h2$
		-6	0	-6	-4	h3 + h2 → h3

÷

6	2	0	3	1	-7/3	$h1 + 1/3h3 \rightarrow h1$
	4	0	-3	-6	-17/3	$h2 + 1/6h3 \rightarrow h2$
		-6	0	-6	-4	$h3 \rightarrow h3$
6	0 ·	0	9/2	4	1/2	$h1 - 1/2h2 \rightarrow h1$
	4	0	-3	-6	-17/3	$h2 \rightarrow h2$
	•	-6	0	-6	~4	$h3 \rightarrow h3$
1	0	0	3/4	2/3	1/12	$1/6h1 \rightarrow h1$
	1	0	-3/4	-3/2	-17/1	$1/4h2 \rightarrow h2$
		1	0	`1	2/3	$-1/6h3 \rightarrow h3$

Ta thu được

$$P = \begin{bmatrix} 3/4 & 2/3 & 1/12 \\ -3/4 & -3/2 & -17/12 \\ 0 & 1 & 2/3 \end{bmatrix}.$$

(b) Ta viết

$$w = \delta_1 u_1 + \delta_2 u_2 + \delta_3 u_3$$

thỉ
 $\boldsymbol{\delta}_{1},\,\boldsymbol{\delta}_{2},\,\boldsymbol{\delta}_{3}$ là nghiệm của hệ

$$\begin{bmatrix} -3 & -3 & 1\\ 0 & 2 & 6\\ -3 & 1 & -1 \end{bmatrix} \begin{bmatrix} \delta_1\\ \delta_2\\ \delta_3 \end{bmatrix} = \begin{bmatrix} -5\\ 8\\ -5 \end{bmatrix}$$

Giải hệ này ta được

Vây
$$\delta_1 = 31/21, \qquad \delta_2 = 4/7, \qquad \delta_3 = 8/7.$$

$$\left[\omega\right]_{B} = \begin{bmatrix} 31/21\\ 4/7\\ 8/7 \end{bmatrix},$$

Từ đó

$$[w]_{B'} = P[w]_{B} = \begin{bmatrix} 3/4 & 2/3 & 1/12 \\ -3/4 & -3/2 & -17/12 \\ 0 & 1 & 2/3 \end{bmatrix} \begin{bmatrix} 31/21 \\ 4/7 \\ 8/7 \end{bmatrix} = \begin{bmatrix} 19/12 \\ -43/12 \\ 4/3 \\ 127.0.0.1 \text{ downloaded } 60383.\text{pdf at Tue Jul } 31^{-}08:30:19 \text{ ICT } 2012 \\ 252 \end{bmatrix}$$

(c) Tính trực tiếp $[w]_{B^n}$. Ta viết

 $w = c_1 v_1 + c_2 v_2 + c_3 v_3$

thì c_1 , c_2 , c_3 là nghiệm của hệ

$$\begin{bmatrix} -6 & -2 & -2 \\ -6 & -6 & -3 \\ 0 & 4 & 7 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -5 \\ 8 \\ -5 \end{bmatrix}$$

Giải hệ này ta được

 $c_1 = 19/12, \quad c_2 = -43/12, \quad c_3 = 4/3$

Vậy có

ø

$$[w]_{B'} = \begin{bmatrix} 19/12 \\ -43/12 \\ 4/3 \end{bmatrix}$$

trùng với kết quả trên.

5.60. (a) Áp dụng cách làm ở bài 5.59. Ta phải giải hệ

$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

Khi giải một hệ ta có thể thay đổi vị trí của hai phương trình

3	1	· -1	2	2	1	.h1
1	1	0	1	-1 ·	2	h2
-5	-3	2	1	1	1	h3
3	1	-1	2	2	1	$h1 \rightarrow h1$
	2	1	1	-5	5	$3(h_2 - \frac{1}{3}h_1) \rightarrow h2$
	-4	1	13	13	. 8	$3(h_3 + \frac{5}{3}h1) \rightarrow h3$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 20_{253}^{12}

3	1	-1	2	2	1	h1 → h1
	2	1	1	-5	5	$h2 \rightarrow h2$
	•	1	5	· 1	6	$\frac{1}{3}(h3 + 2h2) \rightarrow h3$
3	1	0	7	3	7	$h1 + h3 \rightarrow h1$
	2	0	-4	-6	-1	$h2 - h1 \rightarrow h2$
		1	5	1	6	h3 → h3
3	0	0	9	6	15/2	$h1 - \frac{1}{2}h2 \rightarrow h1$
	2	0	-4	-6	-1	$h2 \rightarrow h2$
		1	5	1	6	h3 → h3
1	0	0	3	2	5/2	$h1/3 \rightarrow h1$
	1	0	-2	-3	-1/2	$h2/2 \rightarrow h2$
		1	5	1	6	h3 → h3

6

Vậy

$$P = \begin{bmatrix} 3 & 2 & 5/2 \\ -2 & -3 & -1/2 \\ 5 & 1 & 6 \end{bmatrix}$$

(b) Tính $[w]_B$. Ta viết

$$w = \delta_1 u_1 + \delta_2 u_2 + \delta_3 u_3.$$

th
l $\delta_1\,,\,\delta_2\,,\,\delta_3$ là nghiệm của

$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \end{bmatrix} = \begin{bmatrix} -5 \\ 8 \\ -5 \end{bmatrix}$$

Giải hệ này ta được

$$\delta_1 = 9, \quad \delta_2 = -9, \quad \delta_3 = -5$$

Vây

$$\left[w\right]_{B} = \begin{bmatrix} 9\\ -9\\ -5 \end{bmatrix}$$

127.0.0.1₂downloaded 60383.pdf at Tue Jul 31ี 08:30:19 ICT 2012

Từ đó

Vây

$$[w]_{B^{*}} = P[w]_{B} = \begin{bmatrix} 3 & 2 & 5/2 \\ -2 & -3 & -1/2 \\ 5 & 1 & 6 \end{bmatrix} \begin{bmatrix} 9 \\ -9 \\ -5 \end{bmatrix} = \begin{bmatrix} -7/2 \\ 23/2 \\ 6 \end{bmatrix}$$

Tip h true tign [w] To vigt

(c) Tính trực tiếp $[w]_B$. Ta viết

$$w = c_1 v_1 + c_2 v_2 + c_3 v_3$$

thì c_1 , c_2 , c_3 là nghiệm của hệ

$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -5 \\ 8 \\ -5 \end{bmatrix}$$

Giải hệ này ta được

$$c_1 = -7/2, \quad c_2 = 23/2, \quad c_3 = 6.$$

 $[w]_{B^*} = \begin{bmatrix} -7/2\\ 23/2\\ 6 \end{bmatrix}$

trùng với kết quả trên.

5.61. Trong cơ sở chính tắc $S = \{1, x\}$ của P_1 ta có

$$\begin{bmatrix} p_1 \end{bmatrix} = \begin{bmatrix} 6\\3 \end{bmatrix}, \qquad \begin{bmatrix} p_2 \end{bmatrix} = \begin{bmatrix} 10\\2 \end{bmatrix}$$
$$\begin{bmatrix} q_1 \end{bmatrix} = \begin{bmatrix} 2\\0 \end{bmatrix}, \qquad \begin{bmatrix} q_2 \end{bmatrix} = \begin{bmatrix} 3\\2 \end{bmatrix},$$

(a) Áp dụng nhận xét ở bài tập 5.59 (a).Ta phải giải hệ

$$\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{bmatrix} = \begin{bmatrix} 6 & 10 \\ 3 & 2 \end{bmatrix}$$

Giải hệ này bằng biến đổi sơ cấp ta được

$$P = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{bmatrix} = \begin{bmatrix} 3/4 & 7/2 \\ 3/2 & 1 \end{bmatrix}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

255

(b) Trong cơ sở chính tắc $S = \{1, x\}$ đa thức p = -4 + x có ma trận tọa độ :

$$[p] = \begin{bmatrix} -4\\1 \end{bmatrix}$$

Trong cơ sở B nó viết $p = \alpha p_1 + \beta p_2$ thì α và β là nghiệm của hệ

$$\begin{bmatrix} 6 & 10 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$

Giải hệ này ta được $\alpha = +1$, $\beta = -1$ Vậy

$$[p]_{B} = \begin{bmatrix} +1\\ -1 \end{bmatrix}.$$

Trong cơ sở B' ta có

$$[p]_{B^{*}} = P[p]_{B} = \begin{bmatrix} 3/4 & 7/2 \\ 3/2 & 1 \end{bmatrix} \begin{bmatrix} +1 \\ -1 \end{bmatrix} = \begin{bmatrix} -11/4 \\ +1/2 \end{bmatrix}$$

(c) Tinh truc tiếp $[p]_{B^{*}}$. Ta viết

$$p = c_1 q_1 + c_2 q_2$$

thì c_1 và c_2 là nghiệm của hệ :

$$\begin{cases}
2c_1 + 3c_2 = -4 \\
2c_2 = 1
\end{cases}$$

Ta suy ra

$$c_2 = \frac{1}{2}, \quad c_1 = -11/4$$

Vậy

$$[p]_{B'} = \begin{bmatrix} -11/4 \\ 1/2 \end{bmatrix}$$

trùng với kết quả trên.

(d) Ma trận chuyển cơ sở
$$Q$$
 từ B sang B' là $Q = P^{-1}$

Vì

$$\det(P) = \begin{vmatrix} 3/4 & 7/2 \\ 3/2 & 1 \end{vmatrix} = -\frac{9}{2} \neq 0$$

nên

$$P^{-1} = -\frac{2}{9} \begin{bmatrix} 1 & -7/2 \\ -3/2 & 3/4 \end{bmatrix} = \begin{bmatrix} -2/9 & 7/9 \\ 1/3 & -1/6 \end{bmatrix}$$

5.62. Xét không gian sinh bởi $f_1 = \sin x$ và $f_2 = \cos x$:

$$V = \{ f | f = a \text{sing} + b \text{cost}, \forall a \in \mathbf{R}, \forall b \in \mathbf{R} \}$$

Từ $\alpha f_1 + \beta f_2 = \alpha \sin x + \beta \cos x = 0$, $\forall x$, ta rút ra $\alpha = 0$ khi thay $x = \pi/2$ và $\beta = 0$ khi thay x = 0. Vậy $B = \{f_1, f_2\}$ vừa sinh ra V, vừa độc lập tuyến tính nên B là một cơ sở của V.

Trong cơ sở B ấy các hàm số $f_1 = \sin x$, $f_2 = \cos x$, $g_1 = 2\sin x + \cos x$ và $g_2 = 3\cos x$ có ma trận tọa độ

$$[f_1]_B = \begin{bmatrix} 1\\0 \end{bmatrix}, \ [f_2]_B = \begin{bmatrix} 0\\1 \end{bmatrix}, \ [g_1]_B = \begin{bmatrix} 2\\1 \end{bmatrix}, \ [g_2]_B = \begin{bmatrix} 0\\3 \end{bmatrix}$$

(a) Ta chứng minh g_1 và g_2 cũng sinh raV và độc lập tuyến tính.

Vì
$$f \in V \Leftrightarrow [f]_B = \begin{bmatrix} a \\ b \end{bmatrix}$$
 nên g_1 và g_2 sinh ra V nếu hệ
 $\alpha g_1 + \beta g_2 = f$

tức là

$$\alpha \begin{bmatrix} 2\\1 \end{bmatrix} + \beta \begin{bmatrix} 0\\3 \end{bmatrix} = \begin{bmatrix} a\\b \end{bmatrix}$$

có nghiệm $\forall a, \forall b$. Hệ này viết

$$\begin{cases} 2\alpha &= a \\ \alpha + 3\beta &= b \end{cases}$$

luôn có nghiệm (vì có định thức = $6 \neq 0$). Vậy B' = $\{g_1, g_2\}$ sinh ra V.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 17-BT.TCC.T1 257 Bây giờ xét hệ $\alpha g_1 + \beta g_2 = 0$ tức là

$$\begin{cases} 2\alpha &= 0\\ \alpha + 3\beta &= 0 \end{cases}$$

Hệ này chỉ có nghiệm $\alpha = 0, \beta = 0$. Do đó g_1 và g_2 độc lập tuyến tính.

Vậy $B' = \{g_1, g_2\}$ cũng là một cơ sở của V.

(b) Áp dụng nhận xét ở bài tập 5.59 (a) ta xét hệ

$\begin{bmatrix} 2\\1 \end{bmatrix}$	$\begin{bmatrix} 0\\ 3 \end{bmatrix}$	$\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$	$\left[egin{array}{c} eta_1 \ eta_2 \end{array} ight]$	=	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	
		F	_				

Giải ra ta được

$$P = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_1 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 \\ -1/6 & 1/3 \end{bmatrix}$$

là ma trận chuyển cơ sở từ B' sang B.

(c) Ta thấy ngay

$$[h]_{B} = \begin{bmatrix} 2\\ -5 \end{bmatrix}$$

Do đó

$$[h]_{B'} = P[h]_{B} = \begin{bmatrix} 1/2 & 0 \\ -1/6 & 1/3 \end{bmatrix} \begin{bmatrix} 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

(d) Tinh trực tiếp $[h]_{B'}$. Viết

$$[h]_{B'} = c_1 g_1 + c_2 g_2$$

thì c_1 và c_2 là nghiệm của hệ

$$\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$
Giải ra ta được $c_1 = 1, c_2 = -2$.

Vậy

$[h]_{B'} = \begin{bmatrix} 1\\ -2 \end{bmatrix}$

trùng với kết quả trên.

(e) Ma trận chuyển cơ sở từ B' sang B là

 $Q = P^{-1}.$

 $Vi \det(P) = 1/6 \neq 0$ nên

$$P^{-1} = 6 \begin{bmatrix} 1/3 & 0 \\ 1/6 & 1/2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}.$$

5.63. Gọi (x, y) là tọa độ của một điểm M của mặt phẳng trong hệ trục xy và (x', y') là tọa độ cũng của M trong hệ trục x'y'. Công thức đổi trục (xem Thcc/1, 4.14.5) là

$$x = x' \cos\theta - y' \sin\theta$$
$$y = x' \sin\theta + y' \cos\theta$$

và

 $x' = x \cos\theta + y \sin\theta$ $y' = -x \sin\theta + y \cos\theta.$ Do đó, ở đây $\theta = 3\pi/4$, ta có (a) $(x, y) = (-2, 6) \Rightarrow$

 $x' = -2\cos\frac{3\pi}{4} + 6\sin\frac{3\pi}{4} = 4\sqrt{2}$

$$y' = 2\sin\frac{3\pi}{4} + y\cos\frac{3\pi}{4} = -2\sqrt{2}$$

(b) $(x', y') = (5, 2) \Rightarrow$

x

$$= 5\cos\frac{3\pi}{4} - 2\sin\frac{3\pi}{4} = -3,5\sqrt{2}$$

$$y = 5\sin\frac{3\pi}{4} + 2\cos\frac{3\pi}{4} = 1,5\sqrt{2}$$

5.64. Ma trận vuông A gọi là trực giao nếu

$$A^{t}A = AA^{t} = I$$

I là ma trận đơn vị cùng cấp với A.

Nếu ma trận A trực giao thì $A^1 = A^{-1}$. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

259

(a) Xét ma trận đơn vị cấp hai

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Ta có

$$I^{\mathsf{t}} = I, \quad I^{\mathsf{t}} I = II^{\mathsf{t}} = I.$$

Vậy ma trận I trực giao và

$$I^{-1} \simeq I^{\mathsf{t}} = I.$$

(b) Xét ma trận cấp hai

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Ta có

$$A^{t} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Ta suy ra

$$A^{t} A = I, AA^{t} = I.$$

Vậy A trực giao và $A^{-1} = A^{t}$. (c) Xét ma trận

$$A = \begin{bmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

 $A^{t} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$

Ta có

.

Do đó

$$AA^{i} = \begin{bmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \neq I$$

Vậy ma trận A này không trực giao. (d) Xét ma trận cấp ba

$$A = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

Ta có

$$A^{t} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

Do đó

۴.

 $AA^{t} = I, A^{t}A = I$ Ma trận A này trực giao và $A^{-1} = A^{t}$. Chú ý. Chỉ cần kiểm tra một điều kiện $AA^{t} = I$ hoặc $A^{t}A = I$.

Thật vậy, giả sử

AA^t = I. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 261

8001 8001

Ta suy ra

det $(AA^{t}) = det (I) = 1$ det (A) det $(A^{t}) = 1$.

Do đó det $(A) \neq 0$ và tồn tại ma trận nghịch đảo A^{-1} . Nhân 2 về của $AA^{1} = I$ với A^{-1} ta được $A^{-1} (AA^{1}) = A^{-1} I = A^{-1}$ $(A^{-1}A) A^{1} = A^{-1}$

 $A^{\iota} = A^{-1}.$

Sau đó, vì $A^{-1}A = I$ nên thay $A^{-1} = A^{t}$, ta thấy $A^{t}A = I$

Tóm lại, từ $AA^{t} = I$ ta suy ra $A^{t}A = I$. Bây giờ giả sử $A^{t}A = I$

Ta cũng lập luận như trên và suy ra

$$AA^{t} = I$$

5.65. (a) Xét

 $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Ta có

$$\mathbf{A}^{t} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Do đó

$$AA^{t} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^{2}\theta + \sin^{2}\theta & \cos\theta\sin\theta - \sin\theta\cos\theta \\ \sin\theta\cos\theta - \cos\theta\sin\theta & \sin^{2}\theta + \cos^{2}\theta \end{bmatrix}$$

Vậy

$$AA^{t} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Theo chú ý ở trên A là ma trận trực giao và $A^{-1} = A^{t} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ (b) Xết $A = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Ta có $t' = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$A^{l} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Do đó

<u>`</u>

$$AA^{t} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos^{2}\theta + \sin^{2}\theta & \cos\theta\sin\theta - \sin\theta\cos\theta & 0\\ \sin\theta\cos\theta - \cos\theta\sin\theta & \sin^{2}\theta + \cos^{2}\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = I$$

Theo chú ý ở trên A là ma trận trực giao

và
$$A^{-1} = A^{t} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

5.66. (1) Phép biến đổi tọa độ đã cho có ma trận

$$\mathbf{A} = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}$$

là phép biến đổi trực giao vì ma trận A là ma trận trực giao. Thực vậy, ta có

$$A' = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & -\frac{3}{5} \end{bmatrix}$$

và do đó

$$AA^{t} = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & -\frac{3}{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{t}A = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2) Ta có

$$A^{-1} = A^{t} = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & -\frac{3}{5} \end{bmatrix}$$

Г

và

$$\begin{bmatrix} x^{*} \\ y^{*} \end{bmatrix} = A^{-1} \begin{bmatrix} x \\ y \end{bmatrix}$$

Do đó

$$A^{-1} \begin{bmatrix} 2\\ -1 \end{bmatrix} = \begin{bmatrix} -2\\ -1 \end{bmatrix}, \qquad A^{-1} \begin{bmatrix} 4\\ 2 \end{bmatrix} = \begin{bmatrix} -4/5\\ -22/5 \end{bmatrix}$$
$$A^{-1} \begin{bmatrix} -7\\ -8 \end{bmatrix} = \begin{bmatrix} -11/5\\ 52/5 \end{bmatrix}, \qquad A^{-1} \begin{bmatrix} 0\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

Vậy các điểm có tọa độ (x, y) là (2, -1), (4, 2), (-7, -8), (0, 0) sẽ có tọa độ (x', y') là (-2, -1), $\left(-\frac{4}{5}, -\frac{22}{5}\right)$, (-11/5, 52/5), (0, 0).

5.67. Phép biến đổi sơ cấp cho

5	7	2	-3	1	hl
2	3	4	~6	2	h2
-11	-15	2	-3	1	h3
5	7	2	-3	1	hl
	1	16	-24	8	$5\left(h2-\frac{2}{5}h1\right) \rightarrow h2$
	2	32	-48	16	$5\left(h3+\frac{11}{5}h1\right) \rightarrow h3$
5	7	2	-3	1	h1
	1	-16	-24	8	h2
	0	0	0	0	$h3 - 2h2 \rightarrow h3$

Vậy hệ đã cho tương đương với hệ

 $\begin{cases} 5x_1 + 7x_2 + 2x_3 - 3x_4 = 1 \\ x_2 + 16x_3 - 24x_4 = 8 \end{cases}$

Xem x_3 và x_4 là tùy ý ta có

$$x_{2} = 8 - 16x_{3} + 24x_{4}$$

$$5x_{1} = 1 - 7x_{2} - 2x_{3} + 3x_{4}$$

$$= 1 - 7 (8 - 16x_{3} + 24x_{4}) - 2x_{3} + 3x_{4}$$

$$= -55 + 110x_{3} - 165x_{4}$$

$$x_{1} = -11 + 22x_{3} - 33x_{4}$$

Vậy có vô số nghiệm :

$$x_1 = -11 + 22x_3 - 33x_4$$

$$x_2 = 8 - 16x_3 + 24x_4$$

$$x_3, x_4 \text{ tùy y}.$$

5.68. Phép biến đổi sơ cấp cho

3	-5	2	4	2	h1
7	-4	1	3	5	h2
5	7	-4	-6	3	h3
3	-5	2	4	2	h1
	23	-11	-19	1	$3\left(h2 - \frac{7}{3}h1\right) \rightarrow h2$
	46	-22	-38	-1	$3 (h3 - \frac{5}{3}h1) \rightarrow h3$
3	-5	2	4	2	h1
	23	-11	-19	1	h2
	• 0	0	Ø	-3	$h3 - 2h2 \rightarrow h3$.

Vậy hệ đã cho tương đương với

 $\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 = 2\\ 23x_2 - 11x_3 - 19x_4 = 1\\ 0x_4 = -3 \end{cases}$

Hệ này không tương thích tức là vô nghiệm. Do đó hệ đã cho cũng vô nghiệm.

5.69. Xét hệ

	$2x_1$	+	$5x_2$	-	$8x_3$	=	8
	4x ₁	+	3x ₂	-	9x ₃	=	9
1	$2x_1$	÷	3x ₂	_	5x ₃	=	7
			8x ₂				

Hệ này có 4 phương trình 3 ẩn. Ta giải nó bằng biến đổi sơ cấp.

2	5	-8	8	h 1
4	3	-9	9	h2
2	3	-5	7	h3
1	8	-7	12	h4

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 266 . 6. 6.

2	5 -7 -2 11	-8 7 3 -6	8 -7 -1 16	h1 $(h2 - 2h1) \rightarrow h2$ h3 - h1 → h3 2h4 - h1) → h4
2	5	-8	8	
	1			$h2/(-7) \rightarrow h2$
	-2		1	
	11	-6	16	h4
2	5 1	-8 -1 1 5	8 1 1 5	h1 h2 h3 + 2h2 → h3 h4 - 11h2 → h4
2	5	-8	8	h1
	1	. –1	1	h2
		1	1	h3
		0	0	$h4 - 5h3 \rightarrow h4$

Vậy hệ đã cho tương đương với

$$2x_1 + 5x_2 - 8x_3 = 8$$

$$x_2 - x_3 = 1$$

$$x_3 = 1$$

Hệ này có nghiệm duy nhất

$$x_3 = 1$$

$$x_2 = x_3 + 1 = 2$$

$$x_1 = \frac{1}{2} (8 - 5x_2 + 8x_3) = \frac{16 - 10}{2} = 3.$$

Vậy hệ đã cho có nghiệm duy nhất

 $x_1 = 3, x_2 = 2, x_3 = 1.$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 267

Chương VI ÁNH XẠ TUYẾN TÍNH

1.01

A - ĐỀ BÀI

6.1. KHÁI NIỆM ÁNH XẠ TUYẾN TÍNH

6.1. Ánh xa $f = \mathbf{R}^2 \rightarrow \mathbf{R}^2$ dưới đây có phải là tuyến tính không : 1) f((x, y)) = (2x, y)(2) $f((x, y)) = (x^2, y)$ 4) f((x, y)) = (0, y)3) f((x, y)) = (y, x)5) f((x, y)) = (x, y + 1)6) f((x, y)) = (2x + y, x - y)8) $f((x, y)) = (\sqrt[3]{x}, \sqrt[3]{y}).$ 7) f((x, y)) = (y, y)6.2. Ánh xạ $f: \mathbf{R}^3 \rightarrow \mathbf{R}^2$ dưới đây có phải là tuyến tính không : 1) f((x, y, z)) = (x, x + y + z) 2) f((x, y, z)) = (0, 0)3) f((x, y, z)) = (1, 1)4) f((x, y, z)) = (2x + y, 3y - 4z), 6.3. Ánh xạ $f: \mathcal{M}_{2} \rightarrow \mathbf{R}$ dưới đây có phải là tuyến tính không : 1) $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$ 2) $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \det\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 3) $f\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = 2a + 3b + c - d$ 4) $f\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = a^2 + b^2$. 6.4. Ánh xa $f:\,P_2\to P_2$ dưới đây có phải là tuyến tính không :

1) $f(a_0 + a_1x + a_2x^2) = a_0 + (a_1 + a_2)x + (2a_0 - 3a_1)x^2$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 268

2)
$$f(a_{ij} + a_1x + a_2x^2) = a_{ij} + a_1(x + 1) + a_2(x + 1)^2$$

3) $f(a_{ij} + a_1x + a_2x^2) = 0$

4) $f(a_0 + a_1x + a_2x^2) = (a_0 + 1) + a_1x + a_2x^2$.

6.5. Cho $f : \mathbf{R}^2 \to \mathbf{R}^2$ là ánh xạ biến mỗi điểm của mặt phẳng thành điểm đối xứng của nó đối với trục y. Hãy tìm công thức cho f và chứng tỏ rằng nó là một toán tử tuyến tính trong \mathbf{R}^2 .

6.6. Gọi $\mathcal{M}_{m \times n}$ là tập các ma trận cỡ $m \times n$. Cho *B* là một ma trận cỡ 2×3 hoàn toàn xác định. Chúng minh rằng ánh xạ $T : \mathcal{M}_{2 \times 2} \to \mathcal{M}_{2 \times 3}$ định nghĩa bởi T(A) = AB là ánh xạ tuyến tính.

6.7. Cho $T: \mathbf{R}^3 \to \mathbf{R}^2$ là một ánh xạ nhân với ma trận và giả sử

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}, T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\0\end{bmatrix}, T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\-7\end{bmatrix}$$

(a) Tìm ma trận của T

(b) Tim
$$T\left(\begin{bmatrix}1\\3\\8\end{bmatrix}\right)$$

(c) Tim $T\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right)$

6.8. Cho ánh x
ạ $T: {\bf R}^3 \to W$ là một phép chiếu trực giao các điểm của
 ${\bf R}^3$ lên mặt phẳng xy.

(a) Tìm công thức của T.

(b) Tim T((2, 7, -1)).

6.9. S là một cơ sở trong không gian n chiếu V.

a) Chứng minh rằng nếu $v_1, v_2, ..., v_r$ là một họ độc lập tuyến tính trong V thỉ các vectơ tọa độ $(v_1)_s, (v_2)_s, ..., (v_r)_s$ cũng tạo thành một họ độc lập tuyến tính trong \mathbf{R}^n và ngược lại.

b) Nếu $\{v_1, ..., v_r\}$ sinh ra V thì $\{v_1\}_s$, ..., $(v_r)_s$ } cũng sinh ra \mathbf{R}^n và ngược lại.

6.2. CÁC TÍNH CHẤT CỦA ÁNH XẠ TUYẾN TÍNH -HẠT NHÂN VÀ ẢNH

6.10. Cho $T: \mathbf{R}^2 \to \mathbf{R}^2$ là ánh xạ nhân với ma trận

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix}$$

1) Hỏi vectơ nào dưới đây $\in \text{Im}(T)$?

(a) (1, -4), (b) (5, 0), (c) (-3, 12).

2) Vecto nào dưới đây $\in \text{Ker}(T)$?

(a) (5, 10), (b) (3, 2), (c) (1, 1).

6.11. 1) Cho ánh xạ tuyến tính $T = P_2 \rightarrow P_3$ xác định bởi T(p(x)) = xp(x). Hỏi phần tử nào dưới đây thuộc Ker(T):

(a) x^2 ; (b) 0, (c) 1 + x?

2) Hỏi phần tử nào dưới đây thuộc Im(T) :

(a) $x + x^2$; (b) 1 + x, (c) $3 - x^2$?

6.12. V là một không gian vectơ, cho $T: V \rightarrow V$ xác định bởi T(v) = 3v.

(a) Tim $\operatorname{Ker}(T)$.

(b) Tìm $\operatorname{Im}(T)$.

6.13. Tìm số chiều của Ker(T) và Im(T) với

(a) T cho ở bài tập 6.10.

(b) T cho ở bài tập 6.11. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 270

6.14. V là không gian n chiều. Tìm hạng của ánh xạ tuyến tính $T: V \rightarrow V$ xác định bởi

(a) T(x) = x; (b) $T(x) = \theta$; (c) T(x) = 3x.

6.15. Xét cơ sở $S = \{v_1, v_2, v_3\}$ trong \mathbf{R}^3 trong đó

 $v_1 = (1, 2, 3), \quad v_2 = (2, 5, 3), \quad v_3 = (1, 0, 10).$

Tìm công thức biểu diễn ánh xạ tuyến tính : $T : \mathbf{R}^3 \to \mathbf{R}^2$ xác định bởi $T(v_1) = (1, 0), T(v_2) = (1, 0), T(v_3) = (0, 1)$. Tính T((1, 1, -1)), trong các cơ sở chính tắc của $\mathbf{R}^3, \mathbf{R}^2$.

6.16. Tìm ánh xa tuyến tính $T : P_2 \rightarrow P_2$ xác định bởi T(1) = 1 + x, $T(x) = 3 - x^2$, $T(x^2) = 4 + 2x - 3x^2$. Tính $T(2 - 2x + 3x^2)$.

6.17. Tính dim(Ker(T)) trong đó

(a) $T : \mathbf{R}^5 \to \mathbf{R}^7$ có hạng 3

(b) $T: P_A \rightarrow P_3$ có hạng 1

(c) Im của $T : \mathbf{R}^6 \to \mathbf{R}^3$ là \mathbf{R}^3 .

(d) $T : \mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ có hang 3.

6.18. A là ma trận cỡ 5×7 có hạng bằng 4.

(a) Hảy tìm số chiều của không gian nghiệm của $Ax = \theta$.

(b) Hỏi Ax = b có tương thích với mọi $b \in \mathbf{R}^5$ không ? Lí do.

6.19. T là một ánh xạ ma trận xác định như dưới đây.

Hãy tìm (a) một cơ sở cho Im(T);

(b) một cơ sở cho $\operatorname{Ker}(T)$;

(c) số chiếu của $\operatorname{Im}(T)$ và $\operatorname{Ker}(T)$.

1)
$$\begin{bmatrix} 1 & -1 & 3 \\ 5 & 6 & -4 \\ 7 & 4 & 2 \end{bmatrix}$$
 2) $\begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$
3) $\begin{bmatrix} 4 & 1 & 5 & 2 \\ 1 & 2 & 3 & 0 \end{bmatrix}$ 4) $\begin{bmatrix} 1 & 4 & 5 & 0 & 9 \\ 3 & -2 & 1 & 0 & -1 \\ -1 & 0 & -1 & 0 & -1 \\ 2 & 3 & 5 & 1 & 8 \end{bmatrix}$
0.1 downloaded 60282 pdf at Tuo, but 21 08:20:10 ICT 201

6.20. Gọi $D : P_3 \rightarrow P_2$ là ánh xạ đạo hàm D(p) = p'. Hãy mô tả Ker(D).

6.21. Gọi $J: P_1 \rightarrow \mathbf{R}$ là ánh xạ tích phân

$$J(p) = \int_{-1}^{1} p(x) dx.$$

Hãy mô tả Ker(J).

6.3. MA TRÂN CỦA ÁNH XẠ TUYẾN TÍNH

6.22. Hãy tìm ma trận chính tắc (xem định nghĩa 6.3.2) của mối toán tử tuyến tính sau :

(a)
$$T((x_1, x_2)) = (2x_1 - x_2, x_1 + x_2)$$

(b) $T((x_1, x_2)) = (x_1, x_2)$
(c) $T((x_1, x_2, x_3)) = (x_1 + 2x_2 + x_3, x_1 + 5x_2, x_3)$
(d) $T((x_1, x_2, x_3)) = (4x_1, 7x_2, -8x_3)$
6.23. Tim ma trận chính tắc của mối ánh xạ tuyến tính sau
(a) $T((x_1, x_2)) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_2)$
(b) $T((x_1, x_2, x_3, x_4)) = (7x_1 - 2x_2 - x_3 + x_4, x_2 + x_3, -x_1)$
(c) $T((x_1, x_2, x_3, x_4)) = (0, 0, 0, 0, 0)$.
(d) $T((x_1, x_2, x_3, x_4)) = (x_4, x_1, x_3, x_2, x_1 - x_3)$.
6.24. Tim ma trận chính tắc của toán tử tuyến tính T :
 $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ biến $v = (x, y)$ thành đối xứng của nó đối với

- (a) Truc x.
- (b) Đường phân giác y = x.
- (c) Gốc tọa độ.

Hãy tính T((2, 1)) trong mối trường hợp. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 272

T :

6.25. Tìm ma trận của ánh xạ tuyến tính $T:P_2 \rightarrow P_1$ xác định bởi

$$T(a_0 + a_1x + a_2x^2) = (a_0 + a_1) - (2a_1 + 3a_2)x$$

đối với các cơ sở chính tắc trong P_2 và P_1 .

6.26. Cho $T : \mathbf{R}^2 \rightarrow \mathbf{R}^3$ xác định bởi

$$T((x_1, x_2)) = (x_1 + 2x_2, -x_1, 0)$$

(a) Tìm ma trận của T đối với các cơ sở $B = \{u_1, u_2\}$ trong \mathbf{R}^2 và B' = $\{v_1, v_2, v_3\}$ trong \mathbf{R}^3 :

 $u_1 = (1, 3), \qquad u_2 = (-2, 4)$

$$v_1 = (1, 1, 1), \quad v_2 = (2, 2, 0), \quad v_3 = (3, 0, 0).$$

(b) Dùng ma trận thu được ở (a) để tính T((8, 3)). 6.27. Cho $T : \mathbf{R}^3 \to \mathbf{R}^3$ xác định bởi

$$T((x_1, x_2, x_3)) = (x_1 - x_2, x_2 - x_1, x_1 - x_3)$$

(a) Tìm ma trận của T đối với cơ sở $B = \{v_1, v_2, v_3\}$

 $v_1 = (1, 0, 1), \quad v_2 = (0, 1, 1), \quad v_3 = (1, 1, 0).$

(b) Dùng ma trận thu được ở (a) để tính T((2, 0, 0)).

6.28. Cho $T:P_2 \to P_4$ là ánh xạ tuyến tính xác định bởi $T(p(x)) = x^2 \ p(x).$

(a) Tìm ma trận của T đối với các cơ sở $B = \{p_1, p_2, p_3\}$ trong P_2 và cơ sở chính tắc B' trong P_4 :

$$p_1 = 1 + x^2$$
, $p_2 = 1 + 2x + 3x^2$, $p_3 = 4 + 5x + x^2$

(b) Dùng ma trận thu được ở (a) hãy tính $T(-3 + 5x - 2x^2)$.

6.29. Cho $v_1 = (1, 3), v_2 = (-1, 4)$ và $A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ là ma trận của ánh xạ $T : \mathbf{R}^2 \to \mathbf{R}^2$ đối với cơ sở $B = \{v_1, v_2\}$.

(a) Tim $[T(v_1)]_{B}$ và $[T(v_2)]_{B}$.

(b) Tìm $T(v_1)$ và $T(v_2)$.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 18-BT.TCC.T1 273

⁽c) Tim T((1, 1)).

6.30. Cho
$$A = \begin{bmatrix} 3 & -2 & 1 & 0 \\ 1 & 6 & 2 & 1 \\ -3 & 0 & 7 & 1 \end{bmatrix}$$

là ma trận của ánh xạ T : $\mathbf{R}^4 \rightarrow \mathbf{R}^3$ đối với các cơ sở $B = \{v_1, v_2, v_3, v_4\} \text{ trong } \mathbf{R}^4 \text{ và } B' = \{w_1, w_2, w_3\} \text{ trong } \mathbf{R}^3:$ $v_1 = (0, 1, 1, 1), \quad v_2 = (2, 1, -1, -1),$ $v_3 = (1, 4, -1, 2), \qquad v_4 = (6, 9, 4, 2).$ $w_1 = (0, 8, 8),$ $w_2 = (-7, 8, 1),$ $w_3 = (-6, 9, 1).$ (a) Tim $[T(v_1)]_{\mathbf{R}^{\prime\prime}}$, $[T(v_2)]_{\mathbf{R}^{\prime\prime}}$, $[T(v_3]_{\mathbf{R}^{\prime\prime}}, [T(v_4)]_{\mathbf{R}^{\prime\prime}}$ (b) Tim $T((v_1))$, $T((v_2))$, $T((v_3))$, $T((v_4))$. (c) Tim T((2, 2, 0, 0)). 6.31. Cho A = $\begin{vmatrix} 1 & 3 & -1 \\ 2 & 0 & 5 \\ 6 & -2 & 4 \end{vmatrix}$ là ma trận của ánh xạ $T: P_2 \rightarrow P_2$ dối với cơ sở $B = \{v_1, v_2, v_3\}$ với $v_1 = 3x + 3x^2$, $v_2 = -1 + 3x + 2x^2$, $v_3 = 3 + 7x + 2x^2$ (a) Tim $[T(v_1)]_{\rm B}$, $[T(v_2)]_{\rm B}$, $[T(v_3]_{\rm B}$; (b) Tim $T(v_1)$, $T(v_2)$, $T(v_3)$. (c) Tim $T(1 + x^2)$. **6.32.** Cho $D : P_2 \rightarrow P_2$ là toán tử đạo hàm D(p) = p'. Tìm ma trận của D đối với mỗi cơ sở $B = \{p_1, p_2, p_3\}$ dưới đây :

(a) $p_1 = 1$, $p_2 = x$, $p_3 = x^2$.

(b) $p_1 = 2$, $p_2 = 2 - 3x$, $p_3 = 2 - 3x + 8x^2$.

(c) Dùng ma trận thu được ở (a) để tính $D(6 - 6x + 24x^2)$.

(d) Làm lại phần (c) đối với ma trận ở (b).

6.33. Trong các bài tập dưới đây hãy tìm ma trận của T đối với cơ sở B rồi suy ra ma trận của T đối với cơ sở B'.
127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 274

1) $T : \mathbf{R}^2 \to \mathbf{R}^2$ xác định bởi $T((x_1, x_2)) = (x_1 - 2x_2 - x_2)$ $B = \{u_1, u_2\}, B' = \{v_1, v_2\}$ $u_1 = (1, 0), u_2 = (0, 1), v_1 = (2, 1), v_2 = (-3, 4),$ 2) $T : \mathbf{R}^2 \to \mathbf{R}^2$ xác định bởi $T((x_1, x_2)) = (x_1 + 7x_2, 3x_1 - 4x_2)$ $B = \{u_1, u_2\}, B' = \{v_1, v_2\}$ $u_1 = (2, 3), \quad u_2 = (4, -1),$ $v_1 = (1, 3), v_2 = (-1, -1).$ 3) $T : \mathbf{R}^3 \to \mathbf{R}^3$ xác định bởi $T((x_1, x_2, x_3)) = (x_1 + 2x_2 - x_3, -x_2, x_1 + 7x_3)$ B là cơ sở chuẩn tắc trong \mathbb{R}^3 , $B' = \{v_1, v_2, v_3\}$ $v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 1, 1).$ 4) T : $\mathbf{R}^3
ightarrow \mathbf{R}^3$ là phép chiếu trực giao lên mặt phẳng xy, B và B' cho ở bài tập 3). 5) $T : \mathbf{R}^2 \to \mathbf{R}^2$ xác định bởi T(x) = 5x, B và B' cho ở bài tập 2). 6) $T : P_1 \rightarrow P_1$ xác định bởi $T(a_{0} + a_{1}x) = a_{0} + a_{1}(x + 1)$ $B = \{p_1, p_2\}, B' = \{q_1, q_2\}$ $p_1 = 6 + 3x, p_2 = 10 + 2x$ $q_1 = 2, q_2 = 3 + 2x.$

6.4. Sự Đồng dạng

6.34 Chúng minh rằng nếu A và B đồng dạng thì A^2 và B^2 đồng dạng.

6.35. Chúng minh rằng hai ma trận đồng dạng có cùng hạng 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 275 6.1. 1) Theo đầu bài

f((x,y)) = (2x, y)

Vậy

$$f((x, y) + (x', y')) = f((x + x', y + y'))$$

= $(2(x + x'), (y + y'))$
= $(2x, y) + (2x', y')$
= $f((x, y)) + f((x', y'));$
 $f((k (x, y))) = f((kx, ky))$
= $(2kx, ky) = k (2x, y)$
= $kf (x, y)).$

Cho nên ánh xạ đã cho là tuyến tính. 2) Theo đầu bài

$$f((x, y)) := (x^2, y).$$

Do đó

$$f((x, y) + (x', y')) = f((x + x', y + y'))$$

= $((x + x')^2, y + y')$
 $\neq (x^2, y) + (x'^2, y') =$
= $f((x, y)) + f((x', y'))$

Vậy ánh xạ đã cho không phải là tuyến tính. 3) Theo đầu bài

$$f((x, y)) := (y, x)$$

Do đó

$$f((x, y) + (x', y')) = f((x + x', y + y'))$$

= (y + y', x + x')
= (y, x) + (y', x')
= f((x, y)) + f((x', y')).

$$f(k (x, y)) = f ((kx, ky)) = (ky, kx) = k(y, x) = kf ((x, y)).$$

Vậy ánh xạ đã cho là tuyến, tính. 4) Theo đầu bài

$$f((x, y) := (0, y)$$

Do đó :

$$f((x, y) + (x', y')) = f((x + x', y + y'))$$

= (0, y + y')
= (0, y) + (0, y')
= f((x, y)) + f((x', y'));
$$f(k (x, y)) = f((kx, ky))$$

$$= (0, ky) = k(0, y) = kf((x, y))$$

Vậy ánh xạ đã cho là tuyến tính.

5) Theo đầu bài

$$f((x, y)) := (x, y + 1).$$

Do đó

$$f((x, y) + (x', y')) = f((x + x', y + y')).$$

= $(x + x', y + y' + 1)$
\$\neq (x, y + 1) + (x', y' + 1)\$
= $f((x, y)) + f((x', y'))$

Vậy ánh xạ đã cho không phải là tuyến tính. 6) Theo đầu bài

$$f((x, y)) := (2x + y, x - y).$$

Do đó

$$f((x, y) + (x', y')) = f((x + x', y + y'))$$

= $(2(x + x') + (y + y'), x + x' - (y + y'))$
= $(2x + y, x - y) + (2x' + y', x' - y')$
= $f((x, y)) + f((x', y'))$

$$f(k (x, y)) = f((kx, ky))$$

= (2kx + ky, kx - ky)
= (k(2x + y), k(x - y))
= k(2x + y, x - y) = kf ((x, y))

Vậy ánh xạ đã cho là tuyến tính. 7) Theo đầu bài

 $f((x_1)$

Do đó

$$y) + (x', y')) = f((x + x', y + y')) = (y + y', y + y')$$

1 ...

f((x, y)) := (y, y)

$$= (y, y) + (y', y') = f((x, y)) + f((x', y'));$$

$$f(k(x, y)) = f((kx, ky)) = (ky, ky) = k(y, y) = kf((x, y)).$$

Vậy ánh xạ đã cho là tuyến tính.

8) Theo đấu bài

$$f((x, y)) := (\sqrt[3]{x}, \sqrt[3]{y}).$$

Do đó

$$f(k(x, y)) = f(kx, ky)$$

= $(\sqrt[3]{kx}, \sqrt[3]{ky})$
\ne k $(\sqrt[3]{x}, \sqrt[3]{y}) = kf((x, y)),$

trừ khi $k = \pm 1$.

Vậy ánh xạ đã cho không tuyến tính.

6.2. 1) Theo đầu bài

$$f((x, y, z)) := (x, x + y + z)$$

Do đó

$$f((x, y, z) + (x', y', z')) = f((x + x', y + y', z + z'))$$

= $(x + x', (x + x') + (y + y') + (z + z')$
= $(x, x + y + z) + (x', x' + y' + z')$
= $f((x, y, z)) + f((x', y', z'))$;

$$f(k(x, y, z)) = f((kx, ky, kz)) = (kx, kx + ky + kz) = (kx, k(x + y + z)) = k(x, x + y + z) = kf((x, y, z)).$$

Vậy ánh xạ đã cho là tuyến tính. 2) Theo đầu bài

$$f((x, y, z)) := (0, 0).$$

Do đó

6,9,9

$$f((x, y, z) + (z', y', z')) = f((x + x', y + y', z + z'))$$

= (0, 0) = (0, 0) + (0, 0)
= f((x, y, z)) + f((x', y', z'));
$$f(k(x, y, z)) = f(kx, ky, kz) = (0, 0) =$$

$$= kf((x, y, z)).$$

Vậy ánh xạ đã cho là tuyến tính.

3) Theo đầu bài

$$f((x, y, z)) = (1, 1).$$

Do đó 🗠

$$f(k(x, y, z)) = f((kx, ky, kz)) = (1, 1) \neq kf((x, y, z))$$

 $trừ khi k = \pm 1.$

Vậy ánh xạ đã cho là không tuyến tính.

4) Theo đầu bài

$$f((x, y, z)) := (2x + y, 3y - 4z).$$

Do đó

$$\begin{aligned} f((x, y, z) + (x', y', z')) &= f((x + x', y + y', z + z')) \\ &= (2(x + x') + (y + y'), \ 3(y + y') - 4(z + z')) \\ &= (2x + y, \ 3y - 4z) + (2x' + y', \ 3y' - 4z') \\ &= f((x, y, z) + f((x', y', z')). \end{aligned}$$

$$f(k(x, y, z)) = f((kx, ky, kz))$$

= $(2(kx) + ky, 3ky - 4kz)$
= $(k(2x + y), k(3y - 4z))$
= $k (2x + y, 3y - 4z)$
= $kf((x, y, z)).$

Vậy ánh xạ đã cho là tuyến tính. 6.3. 1) Theo đầu bài

$$f\left(\begin{bmatrix}a & b\\ c & d\end{bmatrix}\right) := a + d$$

Do đó

$$f\left(\begin{bmatrix}a&b\\c&d\end{bmatrix} + \begin{bmatrix}a'&b'\\c'&d'\end{bmatrix}\right) = f\left(\begin{bmatrix}a+a'&b+b'\\c+c'&d+d'\end{bmatrix}\right) =$$
$$= (a+a') + (d+d') = (a+d) + (a'+d')$$
$$= f\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) + f\left(\begin{bmatrix}a'&b'\\c'&d'\end{bmatrix}\right) ;$$
$$f\left(k\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = f\left(\begin{bmatrix}ka&kb\\kc&kd\end{bmatrix}\right) = ka + kd$$
$$= k(a+d) = kf\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right).$$

Vậy ánh xạ đã cho là tuyến tính. 2) Theo đầu bài

$$f\left(\begin{bmatrix}a & b\\ c & d\end{bmatrix}\right) := \det\left(\begin{bmatrix}a & b\\ c & d\end{bmatrix}\right) = \begin{vmatrix}a & b\\ c & d\end{vmatrix}$$

Do đó

$$f\left(k\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = f\left(\begin{bmatrix}ka&kb\\kc&kd\end{bmatrix}\right) = \begin{vmatrix}ka&kb\\kc&kd\end{vmatrix}$$
$$= k^2 \begin{vmatrix}a&b\\c&d\end{vmatrix} \neq k \begin{vmatrix}a&b\\c&d\end{vmatrix} = kf\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right),$$

trừ khi k = 1.

Vậy ánh xạ đã cho không tuyến tính. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 280

3) Theo đầu bài $f\left(\begin{bmatrix}a & b\\ c & d\end{bmatrix}\right) := 2a + 3b + c - d.$

Do đó

36,9, 9,8,9

$$f\left(\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) + \left(\begin{bmatrix}a'&b'\\c'&d'\end{bmatrix}\right)\right) = f\left(\begin{bmatrix}a+a'&b+b'\\c+c'&d+d'\end{bmatrix}\right)$$
$$= 2(a+a') + 3(b+b') + (c+c') - (d+d')$$
$$= (2a+3b+c-d) + (2a'+3b'+c'-d')$$
$$= f\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) + f\left(\begin{bmatrix}a'&b'\\c'&d'\end{bmatrix}\right),$$
$$f\left(k\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = f\left(\begin{bmatrix}ka&kb\\kc&kd\end{bmatrix}\right) = 2ka+3kb+kc-kd$$
$$= k(2a+3b+c-d) = kf\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right).$$

Vậy ánh xạ đã cho là tuyến tính.

4) Theo đầu bài

$$f\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) := a^2 + b^2$$

Do đó

$$\begin{split} f\left(k\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) &= f\left(\begin{bmatrix}ka&kb\\kc&kd\end{bmatrix}\right) &= (ka)^2 + (kb)^2 \\ &= k^2(a^2 + b^2) \neq k(a^2 + b^2) = kf\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right), \end{split}$$

trừ khi k = 1.

Vậy ánh xạ đã cho không tuyến tính.

6.4.

(1) Theo đầu bài

 $f(a_o + a_1x + a_2x^2) := a_o + (a_1 + a_2)x + (2a_o - 3a_1)x^2$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

 $\mathbf{281}$

9.9.9. 1. .

Do đó

$$\begin{split} f((a_o + a_1x + a_2x^2) + (b_o + b_1x + b_2x^2)) &= \\ &= f((a_o + b_o) + (a_1 + b_1)x + (a_2 + b_2)x^2) = \\ &= a_o + b_o + ((a_1 + b_1) + (a_2 + b_2))x \\ &+ (2.(a_o + b_o) - 3(a_1 + b_1))x^2 = \\ &= a_o + (a_1 + a_2)x + (2a_o - 3a_1)x^2 \\ &+ b_o + (b_1 + b_2)x + (2b_o - 3b_1)x^2 = \\ &= f(a_o + a_1x + a_2x^2) + f(b_o + b_1x + b_2x^2) ; \\ f(k(a_o + a_1x + a_2x^2)) &= f(ka_o + ka_1x + ka_2x^2) = \\ &= ka_0 + (ka_1 + ka_2)x + (2ka_o - 3ka_1)x^2 \\ &= k(a_o + (a_1 + a_2)x + (2a_o - 3a_1)x^2) \\ &= k(a_o + (a_1 + a_2)x + (2a_o - 3a_1)x^2) \\ &= kf(a_o + a_1x + a_2x^2). \end{split}$$

Vậy ánh xạ đã cho là tuyến tính. 2) Theo đầu bài

 $f(a_o + a_1x + a_2x^2) := a_o + a_1(x + 1) + a_2(x + 1)^2$ Do do

$$\begin{aligned} f(k(a_o + a_1x + a_2x^2) &= f(ka_o + ka_1x + ka_2x^2) \\ &= ka_o + ka_1(x + 1) + ka_2(x + 1)^2 \\ &= k(a_o + a_1(x + 1) + a_2(x + 1)^2 \\ &= kf(a_o + a_1x + a_2x^2) ; \\ f((a_o + a_1x + a_2x^2) + (b_o + b_1x + b_2x^2)) \\ &= f((a_o + b_o) + (a_1 + b_1)x + (a_2 + b_2)x^2) \end{aligned}$$

$$= a_o + b_o + (a_1 + b_1)(x + 1) + (a_2 + b_2)(x + 1)^2$$

= $a_o + a_1(x + 1) + a_2(x + 1)^2 + b_1(x + 1) + b_2(x + 1)^2$

$$+ b_o + b_1(x + 1) + b_2(x + 1)^2 =$$

= $f(a_o + a_1x + a_2x^2) + f(b_o + b_1x + b_2x^2)$

Vậy ánh xạ đã cho là tuyến tính. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 282

3) Theo đầu bài

$$f(a_0 + a_1x + a_2x^2) := 0$$

Do đó

$$f(k(a_{0} + a_{1}x + a_{2}x^{2})) = f(ka_{0} + ka_{1}x + ka_{2}x^{2}) = 0$$

$$= k0 = kf(a_{0} + a_{1}x + a_{2}x^{2}) ;$$

$$f((a_{0} + a_{1}x + a_{2}x^{2}) + (b_{0} + b_{1}x + b_{2}x^{2})) =$$

$$= f((a_{0} + b_{0}) + (a_{1} + b_{1})x + (a_{2} + b_{2})x^{2}) = 0$$

$$= 0 + 0 = f(a_{0} + a_{1}x + a_{2}x^{2}) + f(b_{0} + b_{1}x + b_{2}x^{2}).$$

Vậy ánh xạ đã cho là ánh xạ tuyến tính.

4) Theo đầu bài

$$f(a_0 + a_1x + a_2x^2) := (a_0 + 1) + a_1x + a_2x^2.$$
 Do đó

$$\begin{split} f(k(a_o + a_1x + a_2x^2)) &= f(ka_o + ka_1x + ka_2x^2) \\ &= (ka_o + 1) + ka_1x + ka_2x^2 \\ &\neq k((a_o + 1) + a_1x + a_2x^2) \\ &= kf(a_o + a_1x + a_2x^2) \,, \end{split}$$

trừ khi $k = \pm 1$.

Vậy ánh xạ đã cho không tuyến tính.

6.5. Nếu $(x, y) \in \mathbb{R}^2$ thì điểm đối xứng của nó đối với trục y là (-x, y). Do đó có ánh xạ

$$f((x, y)) = (-x, y).$$

Do đo

$$f'(x, y) + (x', y')) = f((x + x', y + y'))$$

= (- (x + x'), (y + y'))
= (-x, y) + (-x', y')

= f((x, y)) + f((x', y'));127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012
283

$$f(k(x, y)) = f((kx, ky)) = (-kx, ky) = k(-x, y) = kf((x, y)).$$

Vậy ánh xạ đã cho là tuyến tính. 6.6. Giả sử

$$A \in \mathcal{M}_{2 \times 2} \text{ có cõ } 2 \times 2$$
$$B \in \mathcal{M}_{2 \times 3} \text{ có cõ } 2 \times 3.$$

Vậy A nhân với B được và AB có cỡ 2×3 . Ánh xạ T(A) := ABlà một ánh xạ từ $\dot{\mathcal{M}}_{2 \times 2}$ tới $\mathcal{M}_{2 \times 3}$.

Theo tính chất của phép nhân ma trận và phép nhân ma trận với một số, ta có

$$A, A' \in \mathcal{M}_{2 \times 2} \Rightarrow T(A + A') = (A + A')B$$
$$= AB + A'B = T(A) + T(A')$$
$$A \in \mathcal{M}_{2 \times 2}, \mathbf{k} \in \mathbf{R} \Rightarrow T(kA) = (kA)B$$
$$= k(AB) = kT(A).$$

Vậy ánh xạ đã cho là tuyến tính.

6.7. a) Các vecto

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

là các vectơ cơ sở của cơ sở chính tắc E của \mathbf{R}^3 . Vậy theo định lí 6.3.1 Thec/1, ta có ma trận của ánh xạ T là

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 1 & 0 & -7 \end{bmatrix}$$

b) $T\left(\begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix} \right) = A \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix} = \begin{bmatrix} 42 \\ -55 \end{bmatrix}$
c) $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 3 & 4 \\ 1 & 0 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + 3y + 4z \\ x - 7z \end{bmatrix}$
127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Ta có thể viết

T((x, y, z)) = (x + 3y + 4z, x - 7z).

6.8. (a) Nếu (x, y, z) là tọa độ của một điểm của không gian xyz thuộc hình chiếu của nó lên mặt phẳng xy sẽ có tọa độ (x, y, 0). Vậy có

$$T((x, y, z)) := (x, y, 0)$$

(b) Áp dụng công thức đó ta có

$$T((2, 7, -1)) = (2, 7, 0).$$

6.9. Theo đầu bài ta xét hai tập.

$$E = \{ v_1, v_2, \dots, v_r \} \quad v_i \in V$$

$$F = \{ (v_1)_S, (v_2)_S, \dots, (v_r)_S \}, (v_i)_S \in \mathbb{R}^n$$

Ta phải chứng minh :

1) Nếu E độc lập tuyến tính trong V thì F độc lập tuyến tính trong \mathbf{R}^n , và ngược lại :

2) Nếu F độc lập tuyến tính trong \mathbf{R}^n thì E độc lập tuyến tính trong V.

Trước hết ta nêu hai nhận xét

$$w = \theta \in V \Leftrightarrow (w)_S = (0, 0, ..., 0) \in \mathbb{R}^n$$
(6.1)

$$c_i(v_1)_S + \dots + c_r(v_r)_S = (c_1v_1 + \dots + c_rv_r)_S, v_i \in V$$
 (6.2)

Để chứng minh phần 1) ta giả sử E độc lập tuyến tính trong V và xét

$$c_1(v_1)_S + \dots + c_r(v_r)_S = (0, 0, \dots, 0)$$
 (6.3)

Từ đó với nhận xét (6.2) ta suy ra

$$(c_1v_1 + ... + c_rv_r)_S = (0, 0, ..., 0)$$
 (6.4)

Với nhận xét (6.1) thì (6.4) cho

$$c_1v_1 + c_2v_2 + \dots + c_rv_r = \theta \in V$$
 (6.5)

Nhưng ta đã giả sử E độc lập tuyến tính trong V nên phương trình (6.5) buộc

$$c_1 = c_2 = \dots = c_n = 0$$
 (6.6)

Vây (6:3) \Rightarrow (6.6). Điều dó chúng tỏ F độc lập tuyến tính và phần 1) chúng minh xong.

Để chứng minh phần 2, ta giả sử F độc lập tuyến tính trong \mathbf{R}^n và xét

$$c_1 v_1 + c_2 v_2 + \dots + c_r v_r = \theta \in V$$
(6.7)

Theo nhận xét (6.1) ta có

 $(c_1v_1 + c_2v_2 + \dots + c_rv_r)_S = (\theta)_S = (0, 0, \dots, 0).$

Áp dụng nhận xét (6.2) ta được

$$c_1(v_1)_S + c_2(v_2)_S + \dots + c_r(v_r)_S = (0, 0, \dots, 0).$$

Nhưng ta đã giả sử F độc lập tuyến tính trong \mathbf{R}^{n} . Cho nên đẳng thức trên buộc có (6.6).

Vậy (6.7) \Rightarrow (6.6) nghĩa là E độc lập tuyến tính trong V, và phần 2) chứng minh xong.

6.10 Nếu hệ

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

có nghiệm (x, y) thỉ (a, b) là ảnh của (x, y) và do đó $(a, b) \in \text{Im}(T)$; nếu hệ trên vô nghiệm thỉ (a, b) không phải là ảnh của (x, y)nào, nên $(a, b) \notin \text{Im}(T)$. Ở đây

(a) Hệ

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$$

có nghiệm : y tùy ý, x = (1 + y)/2, nên $(1, -4) \in \text{Im}(T)$. (b) Hệ

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

không có nghiệm nên $(5, 0) \notin \text{Im}(T)$.

(c) Hệ

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 \\ 12 \end{bmatrix}$$

có nghiệm : y tùy ý, x = (-3 + y)/2 nên (-3, 12) ∈ Im (T) 127.0.0₂₈₆downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 2) Néu

`°

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

thì (α, β) có ảnh là (0, 0), nên $(\alpha, \beta) \in \text{Ker}(T)$; nếu không có đẳng thức trên thì (α, β) có ảnh $\neq (0, 0)$ nên $(\alpha, \beta) \notin \text{Ker}(T)$. Ở đây

$$\begin{array}{c} (\mathbf{a}) \\ \begin{pmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 10 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

nên $(5, 10) \in \operatorname{Ker}(T)$.

(b)
$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -16 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

nên (3, 2) $\notin \operatorname{Ker}(T)$

(c)
$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

nên $(1, 1) \notin \text{Ker}(T)$.

6.11. 1) Ker $(T) = \{p \in P_2, T(p) = 0 \in P_3\}$ \mathring{O} dây T(p) := xp. Vậy nếu xp = 0 thì $p \in \text{Ker}(T)$ nếu $xp \neq 0$ thì $p \notin \text{Ker}(T)$. Vậy có (a) $p = x^2 \Rightarrow xp = x^3 \neq 0 \Rightarrow x^2 \notin \text{Ker}(T)$; (b) $p = 0 \Rightarrow xp = x \cdot 0 = 0 \Rightarrow 0 \in \text{Ker}(T)$; (c) $p = 1 + x \Rightarrow xp = x(1 + x) \neq 0 \Rightarrow 1 + x \notin \text{Ker}(T)$. 2) Im $(T) = \{q \in P_3 \text{ sao cho } \exists p \in P_2 \text{ dề } T(p) = q\}$ Vì T(p) := xp cho nên : nếu phương trình xp = q có nghiệm $p \in P_2$ thì $q \in \text{Im}(T)$, nếu phương trình này vô nghiệm thì $q \notin \text{Im}(T)$. Vậy có (a) $xq = x + x^2$ có nghiệm $q = 1 + x \in P_2$, nên $x + x^2 \in \text{Im}(T)$. (b) xq = 1 + x không có nghiệm $q \in P_2$, nên $(1 + x) \notin \text{Im}(T)$;

(c) $xq = 3 - x^2$ không có nghiệm $q \in P_2$, nên $3 - x^2 \notin \text{Im}(T)$.

6.12. Ta có
$$T(v) = 3v$$

(a) Ker $(T) = \{v \in V, T(v) = \theta \in V\}$
 $= \{v \in V, 3v = \theta \in V\}.$

Phương trình $3v = \theta$ chỉ có nghiệm θ . Vậy Ker $(T) = \{\theta\}$. (b) Im $(T) = \{w \in V, \exists v \in V \text{ dề } T(v) = u\}$ $= \{w \in V, \exists v \in V \text{ dề } 3v = u\}$

Phương trình 3 v = u bao giờ cũng có nghiệm $v = u/3 \in V$. Vậy Im(T) = V.

6.13. (a) Để xét dim (Ker(T)) ta giải hệ

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Hệ này tương đương với một phương trình

2x - y = 0

nên nó có nghiệm phụ thuộc 1 tham số :

x tùy ý, y = 2x

tức là

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 2x \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Vậy

 $\dim(\operatorname{Ker}(T)) = 1.$

Do đó (xem định lí 6.2.3 trong Thcc/1)

 $\dim(\operatorname{Im}(T)) = \dim(\mathbf{R}^2) - \dim(\operatorname{Ker}(T))$

= 2 - 1 = 1.

(b) Phuong trình $T(p) = 0 \in P_3$ viết

$$xp = 0 \in P_3$$

có nghiệm duy nhất là $p = 0 \in P_2$. Vậy dim(Ker(T)) = 0.

Do đó

dim (Im(T)) = dim (P_2) - dim (Ker (T)) = 3 - 0 = 3.

6.14. Hạng của ánh xạ tuyến tính được xác định bởi rank $(T) = \dim (\operatorname{Im}(T))$

Vậy, vì V là không gian n chiếu nên

(a) T(x) = x thi $\operatorname{rank}(T) = n$;

(b) $T(x) = \theta$ thi rank(T) = 0;

(c) T(x) = 3x thi $\operatorname{rank}(T) = n$.

6.15. Trước hết tả tỉm biểu diễn của $(x, y, z) \in \mathbb{R}^3$ trong cơ sở S :

$$(x, y, z) = c_1v_1 + c_2v_2 + c_3v_3$$

= $c_1(1, 2, 3) + c_2(2, 5, 3) + c_3(1, 0, 10)$

Như vậy c_1 , c_2 , c_3 là nghiệm của hệ

	. c ₁	+	$2c_2$	+	<i>c</i> ₃	=	x
ł	2 c ₁	÷	5c ₂			=	y
	3c ₁	ł	$3c_2$	+	c ₃ 10c ₃	=	Z

Lây phương trình cuối trừ 10 lần phương trình đầu ta được

$$-7c_1 - 17c_2 = z - 10x$$

Vậy hệ trên thu về

 $\begin{cases} 2c_1 + 5c_2 = y \\ -7c_1 - 17c_2 = z - 10x \end{cases}$

Từ đó ta tính được

$$c_1 = 50x - 17y - 5z$$

$$c_2 = -20x + 7y + 2z$$

Sau đó

$$c_3 = -9x + 3y + z$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 19-BT.TCC.T1 2

289

Bay giờ, vì $(x, y, z) = c_1v_1 + c_2v_2 + c_3v_3$ nên $T((x, y, z)) = c_1T(v_1) + c_2T(v_2) + c_3T(v_3)$ $= c_1(1,0) + c_2(1,0) + c_3(0,1).$

Nhờ các biểu thức về c_1 , c_2 , c_3 đã tìm ra ta có

T((x, y, z)) = (30x - 10y - 3z, -9x + 3y + z).Ap dung

$$T(1, 1, 1) = (30.1 - 10.1 - 3.1, -9.1 + 3.1 + 1)$$

= (17, -5).

6.16.

$$p \in P_2 \Leftrightarrow p = a_o + a_1 x + a_2 x^2$$
$$T(p) = a_o T(1) + a_1 T(x) + a_2 T(x^2)$$
$$= a_o (1 + x) + a_1 (3 - x^2) + a_2 (4 + 2x - 3x^2)$$

Do đó

$$T(p) = (a_o + 3a_1 + 4a_2) + (a_o + 2a_2)x - (a_1 + 3a_2)x^2.$$

Áp dụng

 $T(2 - 2x + 3x^2) = (2 + 3(-2) + 4.3) + (2 + 2.3)x - (-2 + 3.3)x^2$

 $= 8 + 8x - 7x^2$.

6.17. V và W là 2 không gian hữu hạn chiếu

 $T: V \rightarrow W$ là một ánh xạ tuyến tính

thì rank(T) = dim(Im(T)) và

 $\dim (\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T)) = \dim(V).$

Vậy có

 $\dim(\operatorname{Ker}(T)) = \dim(V) - \operatorname{rank}(T),$

Do đó

(a) dim(Ker(T)) = 5 - 3 = 2 ; 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 290 (**b**) dim (Ker(T)) = 5 - 1 = 4;

(c) $\dim(\operatorname{Ker}(T)) = 6 - 3 = 3$;

(d) $\dim(\operatorname{Ker}(T)) = 4 - 3 = 1$.

6.18. (a) Số chiếu của không gian nghiệm của $Ax = \theta$ là 7 - 4 = 3 (xem định lí 6.2.4, Thcc/1).

(b) Không. Muốn cho Ax = b tương thích $\forall b \in \mathbb{R}^5$, phải có $\text{Im}(T) = \mathbb{R}^5$, nhưng vì rank(T) = 4 nên dim $(\text{Im}(T)) = 4 \neq 5$, nên $\text{Im}(T) \neq \mathbb{R}^5$.

6.19. Chú ý rằng (xem Thcc/1, 6.2.3 trang 326) :

Im(T) = không gian sinh bởi các vectơ cột của ma trận A của T.

1)
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & 6 & -4 \\ 7 & 4 & 2 \end{bmatrix}$$

có cấp 3. Biến đổi sơ cấp theo cột ta được

[1	-1	3		[1	0	0 - 19/3 19/3		[1 Î	0	0]
5	6	-4	-	5	11	- 19/3	€	5	1	0
7	4	2		7	11	19/3		7	1	0
•		_		<u>د</u>			1	Ļ		

Ta thấy chỉ có 2 cột độc lập tuyến tính. Vậy

$$\dim(\operatorname{Im}(T)) = 2.$$

 $\dim(\text{Ker}(T)) = 3 - 2 = 1.$

Một cơ sở của Im(T) là hai vectơ

$$\begin{bmatrix} 1\\5\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

Để tìm cơ sở cho Ker(T) ta xét hệ thuân nhất :

$$Ax = \theta$$
.

Ta giải nó bằng biến đổi sơ cấp

1 5 7	-1 6 4	3 -4 2	0 0 0
 1	-1	. 3	0
	11	-19	0
	11	-19	0
 1	-1	3	0
	11	-19	0
	0	0	0

Hệ cơ nghiệm :

$$x_3$$
 tùy ý, $x_2 = \frac{19}{11}x_3$, $x_1 = -\frac{14}{11}x_3$.

Vậy

Để

$$\operatorname{Ker}(T) = \{ (x_1, x_2, x_3) \} = x_3 \left(-\frac{14}{11}, \frac{19}{11}, 1 \right)$$

cho nên một cơ sở của Ker(T) là

2)
$$\{(-14, 19, 11)\}.$$
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Ma trận này chỉ có một cột độc lập tuyến tính là cột thứ nhất chẳng hạn, hai cột kia tỉ lệ với nó. Vậy

$$\dim(\operatorname{Im}(T)) = 1$$
$$\dim(\operatorname{Ker}(T)) = 3 - 1 = 2$$
Một vectơ cơ sở của Im(T) là (1, 2, 0).
Dể tìm cơ sở cho Ker(T) ta xét hệ thuận nhất

$$Ax = \theta$$
.

Ta giải nó bằng biến đổi sơ cấp 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 292

www.VNMATH.com

2	0	-1	0	
4	0	-2	0	
0	0	0	0	
2	0	-1	0	
0	0	0	0	
0	0	0	0	

Hệ có nghiệm

 x_2 tùy ý, x_1 tùy ý, $x_3 = 2x_1$

Vậy

$$\operatorname{Ker}(T) = \{ (x_1, x_2, x_3) = (x_1, x_2, 2x_1) \}$$
$$(x_1, x_2, 2x_1) = (x_1, 0, 2x_1) + (0, x_2, 0)$$
$$= x_1 (1, 0, 2) + x_2 (0, 1, 0).$$

Dễ thấy hai vecto (1, 0, 2) = u và (0, 1, 0) = v là độc lập tuyến tính.

Vì ở trên ta đã biết $\dim(\text{Ker}(T)) = 2$ nên hai vecto độc lập tuyến tính này là một cơ sở của Ker(T).

 $A = \begin{bmatrix} 4 & 1 & 5 & 2 \\ 1 & 2 & 3 & 0 \end{bmatrix}$

thực hiện một ánh xạ tuyến tính từ $\mathbf{R}^4 \rightarrow \mathbf{R}^2$.

Hạng của các vectơ cột của A = hạng của A. Dịnh thức

$$\begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix} = 7 \neq 0$$

nên hạng của A = 2. Vậy

$$\dim(\operatorname{Im}(T)) = 2$$

$$\dim(\operatorname{Ker}(T)) = 4 - 2 = 2.$$

Hai cột đầu của ma trận A độc lập tuyến tính (vì định thức $\begin{vmatrix} 4 & 1 \\ 1 & 2 \end{vmatrix} \neq 0$). Vậy một cơ sở của Im(T) là {(4, 1), (1, 2)}. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

293

$$Ax = 0$$

và giải nó bằng biến đổi sơ cấp

4	1	5	2	0
1	2	3	0	0 /
4	1 [·]	5	2	0
	7	7	-2	0

Hệ có nghiệm

$$x_{3} \text{ tùy } \acute{y} ; x_{4} \text{ tùy } \acute{y} ;$$

$$x_{2} = -x_{3} + \frac{2}{7}x_{4} ;$$

$$x_{1} = -x_{3} - \frac{4}{7}x_{4} ;$$

Vậy

$$\operatorname{Ker}(T) = \left\{ (x_1, x_2, x_3, x_4) = \left(-x_3 - \frac{4}{7}x_4, -x_3 + \frac{2}{7}x_4, x_3, x_4 \right) \right\}$$
$$\left(-x_3 - \frac{4}{7}x_4, -x_3 + \frac{2}{7}x_4, x_3, x_4 \right) =$$
$$= (-x_3, -x_3, x_3, 0) + \left(-\frac{4}{7}x_4, \frac{2}{7}x_4, 0, x_4 \right) =$$
$$= x_3(-1, -1, 1, 0) + \frac{1}{7}x_4(-4, 2, 0, 7).$$

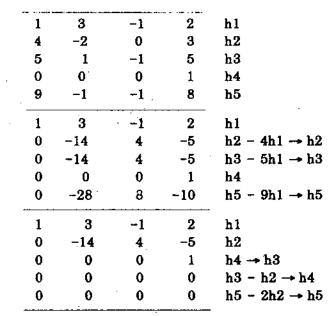
Dễ thấy 2 vecto (-1, -1, 1, 0) và (-4, 2, 0, 7) là độc lập tuyến tính trong \mathbb{R}^4 . Vậy chúng tạo thành một cơ sở cho Ker(T).

4)
$$A = \begin{bmatrix} 1 & 4 & 5 & 0 & 9 \\ 3 & -2 & 1 & 0 & -1 \\ -1 & 0 & -1 & 0 & -1 \\ 2 & 3 & 5 & 1 & 8 \end{bmatrix}$$

thực hiện một ánh xạ tuyến tính : $\mathbf{R}^5 \rightarrow \mathbf{R}^4$.

Các cột độc lập tuyến tính của A là các hàng độc lập tuyến tính của A^t . Ta áp dụng các phép biến đổi sơ cấp về hàng của ma trận A^t .

www.VNMATH.com



Vậy số cột độc lập tuyến tính là 3. Ta có
$$\dim(\operatorname{Im}(T)) = 3$$

 $\dim(\operatorname{Ker}(T)) = \dim (\mathbf{R}^5) - 3 = 5 - 3 = 2.$

Một cơ sở của Im(T) là

$$\begin{bmatrix} 1\\3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\-14\\4\\-5 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Để tìm một cơ sở cho Ker(T), ta xét hệ thuân nhất $Ax = \theta$

và giải nó bằng biến đổi sơ cấp :

1	4	5	0	9	0
3	-2	1	0	-1	0.
-1	0	-1	0	-1	0
2	3	5	1	8	0

1	4	5	0	9	0
	-14	-14	0	-28	0
	4	4	0	8	0
	-5	~5	1	-10	0
1	4	5	0	9	0
	-14	-14	0	-28	0
		0	0	0	0
		0	1	0	0

Hệ có nghiệm

$$x_4 = 0, x_5$$
 tùy ý, x_3 tùy ý.
 $x_2 = -x_3 - 2x_5, x_1 = -x_3 - x_5.$

Do đó

 $\operatorname{Ker}(T) = \{(x_1, x_2, x_3, x_4, x_5) = (-x_3 - x_5, -x_3 - 2x_5, x_3, 0, x_5)\}$ $(-x_3 - x_5, -x_3 - 2x_5, x_3, 0, x_5) =$ $= (-x_3, -x_3, x_3, 0, 0) + (-x_5, -2x_5, 0, 0, x_5)$ $= x_3(-1, -1, 1, 0, 0) + x_5(-1, -2, 0, 0, 1)$

Dễ thấy hai vecto

u = (-1, -1, 1, 0, 0) và v = (-1, -2, 0, 0, 1)

độc lập tuyến tính trong \mathbf{R}^5 , cho nên chúng tạo thành 1 cơ sở của Ker(T).

6.20 Phương trình D(p) = 0, $p \in P_3$ viết p' = 0, $p \in P_3$ Do đó p = c = hằng số. Vậy Ker $(D) = \{c\}$, c = đa thúc hằng. **6.21.** Phương trình J(p) = 0, $p \in P_1$, viết

$$\int_{-1}^{1} p dx = 0$$

Vì $p \in P_1$ nên p có dạng $p = a_0 + a_1 x$ nên phải có

$$\int_{-1}^{1} (a_{0} + a_{1}x) dx = 0$$

Tích phân bên trái bằng

* 0 •

$$\int_{-1}^{1} (a_o + a_1 x) dx = (a_o x + a_1 \frac{x^2}{2}) \Big|_{-1}^{1} = 2a_o$$

không phụ thuộc a_{μ} , vậy chỉ cần điều kiện $a_{\mu} = 0$ là có J(p) = 0. Do đó

$$\operatorname{Ker}(J) = \{a_1x\}$$

 a_1x là đa thức bậc 1 khuyết số hạng hàng. 6.22. Nhận xét mở đầu (xem Thcc/1, 6.3) T là một ánh xạ tuyến tính $\mathbf{R}^n \rightarrow \mathbf{R}^m$ $B = \{e_1, e_2, ..., e_n\}$ là cơ sở chính tác của \mathbf{R}^n $e_i = (0, ..., 1, ..., 0) \in \mathbf{R}^n$ _____ $B' = \{e'_1, e'_2, ..., e'_m\}$ là cơ sở chính tắc của \mathbb{R}^m $e_{j}^{\prime} = (0, ..., 1, ..., 0) \in \mathbb{R}^{m}$

Ma trận của ánh xạ T xác định bởi

$$A = [(T(e_1)]_{B'} [T(e_2)]_{B'} \dots [T(e_n)]_{B'}]$$

Với ma trận đó ta có

$$A[x]_{B} = [T(x)]_{B}, x \in \mathbf{R}^{n}.$$

Áp dụng nhận xét trên ta có :

(a) Theo đầu bài $T : \mathbf{R}^2 \rightarrow \mathbf{R}^2$ xác định bởi

$$T((x_1, x_2)) := (2x_1 - x_2, x_1 + x_2).$$

Do đó

$$T((1, 0)) = (2, 1)$$

T((0, 1)) = (-1, 1).

Vậy ma trận của ánh xạ này là

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}.$$

Chú ý : đó chính là ma trận hệ số của hệ

$$\begin{cases} 2x_1 - x_2 = y_1 \\ x_1 + x_2 = y_2 \end{cases}$$

(c) Theo đầu bài $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$ xác định bởi $T((x_1, x_2)) := (x_1, x_2)$

Do đó .

$$T((1, 0)) = (1, 0)$$

 $T((0, 1)) = (0, 1)$

Vậy ma trận của ánh xạ này là

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Chúý : đó là ma trận đơn vị và là ma trận hệ số của hệ.

$$\begin{cases} x_1 = y_1 \\ x_2 = y_2 \\ x_2 = y_2 \\ \end{cases}$$
(c) $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
(d) Theo dâu bài $T : \mathbf{R}^3 \to \mathbf{R}^3$ xác dịnh bởi $T((x_1, x_2, x_3)) = (4x_1, 7x_2, -8x_3)$
Do đó $T((1, 0, 0)) = (4, 0, 0)$
 $T((0, 1, 0)) = (0, 7, 0)$
 $T((0, 0, 1)) = (0, 0, -8).$
Vây ma trập của ánh xa này là

$$A = \begin{bmatrix} 4 & & \\ & 7 & \\ & & -8 \end{bmatrix}$$

www.VNMATH.com

.8.0 .8

Chú ý. Đó chính là ma trận hệ số của

$$\begin{cases} 4x_1 = y_1 \\ 7x_2 = y_2 \\ -8x_3 = y_3 \end{cases}$$

6.23. Áp dụng nhận xét ở bài tập 6.22, ta có (a) Theo đầu bài $T : \mathbf{R}^2 \to \mathbf{R}^4$ xác định bởi

$$T((x_1, x_2)) := (x_2, -x_1, x_1 + 3x_2, x_1 - x_2)$$

Do đó

$$T((1, 0)) = (0, -1, 1, 1)$$
$$T((0, 1)) = (1, 0, 3, -1)$$

Vậy ma trận của ánh xạ này là

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{bmatrix}$$

Chú ý. Đó chính là ma trận hệ số của hệ :

$$\begin{cases} x_2 = y_1 \\ -x_1 = y_2 \\ x_1 + 3x_2 = y_3 \\ x_1 - x_2 = y_4 \end{cases}$$

(b) Theo đầu bài $T: \mathbf{R}^4 \rightarrow \mathbf{R}^3$ xác định bởi

 $T((x_1, x_2, x_3, x_4)) := (7x_1 - 2x_2 - x_3 + x_4, x_2 + x_3, -x_1)$ Do do

$$T((1, 0, 0, 0)) = (7, 0, -1);$$

$$T((0, 1, 0, 0)) = (-2, 1, 0);$$

$$T((0, 0, 1, 0)) = (-1, 1, 0);$$

$$T((0, 0, 0, 1)) = (1, 0, 0).$$

Vậy ma trận của ánh xạ này là

$$A = \begin{bmatrix} 7 & -2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

Chú ý. Đó chính là ma trận hệ số của hệ

 $\begin{cases} 7x_1 - 2x_2 - x_3 + x_4 &= y_1 \\ x_2 + x_3 &= y_2 \\ -x_1 &= y_3 \end{cases}$

(c) Theo đầu bài T : $\mathbf{R}^3 \rightarrow \mathbf{R}^5$ xác định bởi

$$T((x_1, x_2, x_3)) = (0, 0, 0, 0, 0)$$

Do đó

$$T((1, 0, 0)) = (0, 0, 0, 0, 0)$$

$$T((0, 1, 0)) = (0, 0, 0, 0, 0)$$

$$T((0, 0, 1)) = (0, 0, 0, 0, 0)$$

Vậy ma trận của ánh xạ này là ma trận không :

(d) Theo đầu bài $T : \mathbf{R}^4 \to \mathbf{R}^5$ xác định bởi

$$T(x_1, x_2, x_3, x_4)) := (x_4, x_1, x_3, x_2, x_1 - x_3)$$

Do đó

$$T((1, 0, 0, 0)) = (0, 1, 0, 0, 1);$$

$$T((0, 1, 0, 0)) = (0, 0, 0, 1, 0);$$

$$T((0, 0, 1, 0)) = (0, 0, 1, 0, -1);$$

$$T((0, 0, 0, 1)) = (1, 0, 0, 0, 0).$$

Vậy ma trận của ánh xạ này là

	0	0	0	1]
	11	0	0	1 0
A ≠	∝ 0	0	1	0 0 0
	0	1	0	0
	1	Q	- 1	0
	L			

Chú ý. Đó chính là ma trận hệ số của hệ

ſ				x 4	$= y_1$	
	x ₁				= y ₂	٠
ł			x ₃		$= y_3$	
		<i>x</i> ₂			= y ₄	
Į	x ₁		- x ₃		$= y_5$	

6.24. Áp dụng nhận xét ở bài tập 6.22 ta có :(a) Theo đầu bài

Do đó

$$T((1, 0)) = (1, 0)$$
$$T((0, 1)) = (0, -1)$$

T((x, y)) := (x, -y)

Vậy ma trận của ánh xạ này là

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Do đó

$$[T((2,1))]_{B'} = A \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & -1 \end{bmatrix} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 2\\-1 \end{bmatrix}$$

Nghĩa là

T((2, 1)) = (2, -1)

đúng như theo định nghĩa của T.

(b) Theo đầu bài ta có

$$T((x, y)) := (y, x)$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

301

Do đó

$$T((1, 0)) = (0, 1) ;$$

$$T((0, 1)) = (1, 0) ;$$

Vậy ánh xạ này có mà trận

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Do đó

$$[T((2,1))]_{B'} = A \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$$

nghia là

T((2, 1)) = (1, 2)

đúng như theo định nghĩa của T.

(c) Theo đầu bài ta có

 $T((x, y)) := \langle -x, -y \rangle$

Do đó

$$T((1, 0)) = (-1, 0),$$

$$T((0, 1)) = (0, -1).$$

Vậy ma trận của ánh xạ này là

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Do đó

$$[T((2, 1))]_{B'} = A \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} -1 & 0\\0 & -1 \end{bmatrix} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} -2\\-1 \end{bmatrix}$$

nghĩa là

T((2, 1)) = (-2, -1)

đúng như theo định nghĩa của T.

6.25. Theo đầu bài $T: P_2 \rightarrow P_1$ xác định bởi

 $T(a_o + a_1x + a_2x^2) := (a_o + a_1) - (2a_1 + 3a_2)x$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 302 Cơ sở chính tắc của P_2 là 1, x, x^2 của P_1 là : 1, x

Do đó

10

$$T(1) = 1$$

 $T(x) = 1 - 2x$
 $T(x^2) = -3x$

Vậy ma trận của ánh xạ T là

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -3 \end{bmatrix}$$

6.26. Theo đấu bài T : $\mathbf{R}^2 \rightarrow \mathbf{R}^3$ xác định bởi

$$T((x_1, x_2)) := (x_1 + 2x_2, -x_1, 0)$$

a) Do đó

$$T(u_1) = T((1, 3)) = (1 + 2.3, -1, 0) = (7, -1, 0)$$
$$T(u_2) = T((-2, 3)) = (-2 + 2.4, 2, 0) = (6, 2, 0)$$

Ta tinh $[T(u_1)]_{B'}$ và $[T(u_2)]_{B'}$

Đối với $[T(u_1)]_{B^*}$ ta phải có

$$(7, -1, 0) = c_1 v_1 + c_2 v_2 + c_3 v_3$$

Như vậy, c_1 , c_2 , c_3 là nghiệm của hệ

$$\begin{cases} c_1 + 2c_2 + 3c_3 = 7\\ c_1 + 2c_2 = -1\\ c_1 = 0 \end{cases}$$

Ta suy ra

$$c_1 = 0, c_2 = -\frac{1}{2}, c_3 = \frac{8}{3}$$

Đối với $[T(u_2)]_{B'}$ ta phải có

 $[6, 2, 0] = b_1v_1 + b_2v_2 + b_3v_3$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

303

Như vậy b_1 , b_2 , b_3 là nghiệm của hệ.

$b_1 + 2b_2 + 3b_3$	= 6
$\begin{cases} b_1 + 2b_2 + 3b_3 \\ b_1 + 2b_2 \end{cases}$	⁻ = 2
b ₁	= 0

Ta suy ra

1

$$b_1 = 0, b_2 = 1, b_3 = \frac{4}{3}$$

9.9

Vay có

$$[T(u_1)]_{B^*} = \begin{bmatrix} 0\\ -\frac{1}{2}\\ \frac{8}{3} \end{bmatrix}, \quad [T(u_2)]_{B^*} = \begin{bmatrix} 0\\ 1\\ \frac{4}{3} \end{bmatrix}$$

Do đó ma trận của ánh xạT đối với cơ sở B trong ${\bf R}^2$ và B' trong ${\bf R}^3$ là

$$A = \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & 1 \\ \frac{8}{3} & \frac{4}{3} \end{bmatrix}$$

b) Với ma trận đó ta có

$$[T((8, 3))]_{B'} = A[(8, 3)]_{B}$$

Dé tinh $[(8, 3)]_B$ ta viết

$$(8, 3) = \alpha u_1 + \beta u_2,$$

nghĩa là

$$(8, 3) = \alpha(1, 3) + \beta(-2, 4).$$

Như vậy α và β là nghiệm của hệ

$$\alpha - 2\beta = 8$$

$$3\alpha + 4\beta = 3.$$

Ta suy ra

$$\alpha = \frac{19}{5}, \quad \beta = -\frac{21}{10}.$$

Do đó

$$[T((8, 3))]_{B^{*}} = \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & 1 \\ \frac{8}{3} & \frac{4}{3} \end{bmatrix} \begin{bmatrix} \frac{19}{5} \\ -\frac{21}{10} \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \\ \frac{22}{3} \end{bmatrix}$$

Ta suy ra ·

$$T((8, 3)) = 0v_1 - 4v_2 + \frac{22}{3}v_3$$
$$= 0(1, 1, 1) - 4(2, 2, 0) + \frac{22}{3}(3, 0, 0)$$
$$= (14, -8, 0).$$

Chú ý. Tính trực tiếp theo định nghĩa thì

$$T((8, 3)) = (8 + 2.3, -8, 0) = (14, -8, 0).$$

6.27. Cho $T: \mathbf{R}^3 \rightarrow \mathbf{R}^3$ xác định bởi

$$T((x_1, x_2, x_3)) = (x_1 - x_2, x_2 - x_1, x_1 - x_3).$$

a) Ma trận của ánh x
ạT trong cơ sở $B=\{v_1^{},\,v_2^{},\,v_3^{}\}$ trong
 ${\bf R}^3$ là

$$A = [[T(v_1)]_B [T(v_2)]_B [T(v_3)]_B]$$

Ta có

$$T(v_1) = T ((1, 0, 1)) = (1, -1, 0)$$

$$T(v_2) = T((0, 1, 1)) = (-1, 1, -1)$$

$$T(v_3) = T((1, 1, 0)) = (0, 0, 1)$$

Bây giờ ta biểu diễn $T(v_1)$ trong cơ sở B. Muốn thế ta viết

$$T(v_1) = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012
20-BT.TCC.T1 305

tức là

£ .

 $(1, -1, 0) = \alpha_1(1, 0, 1) + \alpha_2(0, 1, 1) + \alpha_3(1, 1, 0).$ Do đó $\alpha_1, \alpha_2, \alpha_3$ là nghiệm của hệ

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Một cách tương tự ta viết

$$T(v_2) = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3$$

$$T(v_3) = \gamma_1 v_1 + \gamma_2 v_2 + \gamma_3 v_3$$

thì $(\beta_1, \beta_2, \beta_3)$ và $(\gamma_1, \gamma_2, \gamma_3)$ là nghiệm của hai hệ

[1 0 1	0 1 1	1 1 0	$\begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{\beta}_3 \end{bmatrix}$	=	$\begin{bmatrix} -1\\ 1\\ -1 \end{bmatrix}$,	1 0 1	0 1 1	1 1 0	$\begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{bmatrix}$	=	0 0 1	
•		-	'L]				•		_	LJ			

Ba hệ này có cùng ma trận hệ số ta giải chúng bằng các phép biến đổi sơ cấp viết trong cùng một bảng

1	0	1	1	-1	0
0	1	1	-1	1	0
1	1	0	0	-1	1
1	0	1	1	-1	0
	1	1	-1	1	0
	1	-1	-1	0	1
1	0	1	1	-1	0
	1	1	-1	1	0
		-2	0	-1	1
1	0	0	1	-3/2	1/2
	1	0	-1	1/2	1/2
		1	0	1/2	-1/2

www.VNMATH.com

Ta suy ra

$$A = [[(T(v_1)]_B \ [T(v_2)]_B \ [T(v_3)]_B]$$
$$= \begin{bmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{bmatrix} = \begin{bmatrix} 1 & -3/2 & 1/2 \\ -1 & 1/2 & 1/2 \\ 0 & 1/2 & -1/2 \end{bmatrix}$$

Sau đó ta có

$$[T(w)]_B = A[w]_B, \quad w \in \mathbf{R}^3.$$

b) Như vậy muốn tính T((2, 0, 0)), trước hết ta phải tính $[(2, 0, 0)]_{R}$. Ta có

$$(2, 0, 0) = c_1 v_1 + c_2 v_2 + c_3 v_3$$

$$(2, 0, 0) = c_1 (1, 0, 1) + c_2 (0, 1, 1) + c_3 (1, 1, 0)$$

vì c_1 , c_2 , c_3 là nghiệm của hệ.

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

Giải hệ này ta được

$$c_1 = 1, c_2 = -1, c_3 = 1.$$

Ta suy ra

$$[T((2, 0, 0))]_{B} = A \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} = \begin{bmatrix} 3\\ -1\\ -1 \end{bmatrix}$$

Đó là $[T((2, 0, 0))]_{B}$ (trong cơ sở B). Muốn có T((2, 0, 0)) trong cơ sở chính tắc ta phải viết

$$\begin{bmatrix} 3\\-1\\1 \end{bmatrix} = 3\begin{bmatrix} 1\\0\\1 \end{bmatrix} - \begin{bmatrix} 0\\1\\1 \end{bmatrix} - \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 3 & -1\\-1 & -1\\3 & -1 \end{bmatrix} = \begin{bmatrix} 2\\-2\\2 \end{bmatrix}$$

nghĩa là

T((2, 0, 0)) = (2, -2, 2)127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 **307** Tính trực tiếp ta được

T((2, 0, 0)) = (2 - 0, 0 - 2, 2 - 0) = (2, -2, 2)trùng với kết quả trên.

6.28 Cho $T: P_2 \rightarrow P_4$ xác định bởi

$$T(p(x)) = x^2 p(x).$$

(a) Ta có

$$T(p_1) = T(1 + x^2) = x^2(1 + x^2) = x^2 + x^4$$

$$T(p_2) = T(1 + 2x + 3x^2) = x^2(1 + 2x + 3x^2)$$

$$= x^2 + 2x^3 + 3x^4$$

$$T(p_3) = T(4 + 5x + x^2) = x^2(4 + 5x + x^2)$$

$$= 4x^2 + 5x^3 + x^4$$

Do đó ánh xạ T có ma trận

$$A = [[T(p_1)]_{B'} [T(p_2)]_{B'} [T(p_3)]_{B'}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 4 \\ 0 & 2 & 5 \\ 1 & 3 & 1 \end{bmatrix}$$

và sau đó

$$[T(p)]_{B'} = A[p]_B, p \in P_2$$

(b) Muốn tính $T(-3 + 5x - 2x^2)$ nhờ công thức trên trước hết ta phải biểu diễn đa thức $-3 + 5x - 2x^2$ trong cơ sở B của P_2 . Ta có

$$\begin{aligned} -3 + 5x - 2x^2 &= \alpha p_1 + \beta p_2 + \gamma p_3 \\ &= \alpha (1 + x^2) + \beta (1 + 2x + 3x^2) + \gamma (4 + 5x + x^2) \end{aligned}$$

Do đó, α , β , γ là nghiệm của hệ

 $\begin{cases} \alpha + \beta + 4\gamma = -3 \\ 2\beta + 5\gamma = 5 \\ \alpha + 3\beta + \gamma = -2 \end{cases}$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 308

www.VNMATH.com

Giải hệ này ta được

$$\alpha = -\frac{25}{4}$$
, $\beta = \frac{5}{4}$, $\gamma = \frac{1}{2}$.

Ta suy ra

$$\left[-3 + 5x - 2x^2\right]_B = \begin{bmatrix} -25/4 \\ 5/4 \\ 1/2 \end{bmatrix}$$

Vậy

'o'

$$[T(-3 + 5x - 2x^{2})]_{B'} = A\begin{bmatrix} -25/4\\ 5/4\\ 1/2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ -3\\ 5\\ -2 \end{bmatrix}$$

Vì B' là cơ sở chính tắc của P_4 nên ta suy ra : $T(-3 + 5x - 2x^2) = -3x^2 + 5x^3 - 2x^4.$

Tính trực tiếp ta được

$$T(-3 + 5x - 2x^2) = x^2(-3 + 5x - 2x^2)$$

= $-3x^2 + 5x^3 - 2x^4$,

trùng với kết quả trên.

6.29. Kí hiệu $B = \{v_1, v_2\}$. Ta có

(a)
$$[v_1]_B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad [v_2]_B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 $[T(v_1)]_B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 $[T(v_2)]_B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
(b) $T(v_1) = 1(1, 3) - 2(-1, 4) = (1 + 2, 3 - 8)$
 $= (3, -5)$

$$T(v_2) = 3(1, 3) + 5(-1, 4)$$

= (3 - 5, 9 + 20) = (-2, 29)
(c) Bây giờ tính T(1, 1).
Trước hết ta tính [(1, 1)]_B. Ta viết

$$(1, 1) = \alpha(1, 3) + \beta(-1, 4) = (\alpha - \beta, 3\alpha + 4\beta)$$

Do đó α và β là nghiệm của hệ

 $\begin{cases} \alpha - \beta = 1 \\ 3\alpha - 4\beta = 1 \end{cases}$

Ta suy ra

$$\alpha = \frac{5}{7}, \beta = -\frac{2}{7}$$

Vậy

$$\left[(1, 1) \right]_{B} = \begin{bmatrix} 5/7 \\ - 2/7 \end{bmatrix}$$

Do đó

$$\begin{bmatrix} T(1, 1) \end{bmatrix}_{B} = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} (1, 1) \end{bmatrix}_{B} = \\ = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 5/7 \\ -2/7 \end{bmatrix} = \begin{bmatrix} -1/7 \\ -20/7 \end{bmatrix}$$

Ta suy ra

$$T(1, 1) = -\frac{1}{7}(1, 3) - \frac{20}{7}(-1, 4) = \frac{1}{7}(19, -83).$$

6.30. (a) Ta có

$$[v_1]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad [T(v_1)]_{\mathcal{B}'} = A[v_1]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} v_2 \end{bmatrix}_3 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \qquad \begin{bmatrix} T(v_2) \end{bmatrix}_{B^1} = A[v_2]_B = \begin{bmatrix} -2\\6\\0 \end{bmatrix}$$
$$\begin{bmatrix} v_3 \end{bmatrix}_B = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \qquad \begin{bmatrix} T(v_3) \end{bmatrix}_{B^1} = A[v_3]_B = \begin{bmatrix} 1\\2\\7 \end{bmatrix}$$
$$\begin{bmatrix} v_4 \end{bmatrix}_B = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \qquad \begin{bmatrix} T(v_4) \end{bmatrix}_{B^1} = A[v_4]_B = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
$$\begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
$$(b) \ T(v_1) = 3(0, 8, 8) + (-7, 8, 1) - 3(-6, 9, 1)$$
$$= (11, 5, 22)$$
$$T(v_2) = -2(0, 8, 8) + 6(-7, 8, 1) = (-42, 32, -10)$$
$$T(v_3) = (0, 8, 8) + 2(-7, 8, 1) + 7(-6, 9, 1)$$
$$= (-56, 87, 17)$$
$$T(v_4) = (-7, 8, 1) + (-6, 9, 1) = (-13, 17, 2)$$
$$(c) \ D(v_1) = C(0, 0, 0) + tertion bits to nobilize the field of the probability of the term of the probability of the term of term of$$

(c) Để tính T((2, 2, 0, 0)), trước hết ta phải biểu diễn (2, 2, 0, 0) trong cơ sở B của \mathbf{R}^4 :

$$(2, 2, 0, 0) = c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4$$

= $c_1 (0, 1, 1, 1) + c_2 (2, 1, -1, -1) + c_3 (1, 4, -1, 2) + c_4 (6, 9, 4, 2)$

Do đó c_1 , c_2 , c_3 , c_4 là nghiệm của hệ

$$\begin{cases} 2c_2 + c_3 + 6c_4 = 2\\ c_1 + c_2 + 4c_3 + 9c_4 = 2\\ c_1 - c_2 - c_3 + 4c_4 = 0\\ c_1 - c_2 + 2c_3 + 2c_4 = 0 \end{cases}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 $_{311}$

Giải hệ này ta được

$$c_1 = 1, c_2 = 1, c_3 = 0, c_4 = 0.$$

 $[(2, 2, 0, 0)]_{B} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$

Do đó

Cho nên

$$[T(2, 2, 0, 0)]_{B'} = A[(2, 2, 0, 0)]_{B} = \begin{bmatrix} 1\\ 7\\ -3 \end{bmatrix}.$$

Ta suy ra

T(2, 2, 0, 0) = (0, 8, 8) + 7(-7, 8, 1) - 3(-6, 9, 1)= (-31, 37, 12)

6.31. (a) Ta có

 $\begin{bmatrix} v_1 \end{bmatrix}_B = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \qquad \begin{bmatrix} T(v_1) \end{bmatrix}_B = A[v_1]_B = \begin{bmatrix} 1\\2\\6 \end{bmatrix}.$ $\begin{bmatrix} v_2 \end{bmatrix}_B = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \qquad \begin{bmatrix} T(v_2) \end{bmatrix}_B = A[v_2]_B = \begin{bmatrix} 3\\0\\-2 \end{bmatrix}$ $\begin{bmatrix} v_3 \end{bmatrix}_B = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \qquad \begin{bmatrix} T(v_3) \end{bmatrix}_B = A[v_3]_B = \begin{bmatrix} -1\\5\\4 \end{bmatrix}$

(b)

 $T(v_1) = v_1 + 2v_2 + 6v_3$

$$= (3x + 3x^{2}) + 2(-1 + 3x + 2x^{2}) + 6(3 + 7x + 2x^{2})$$

$$= 16 + 51x + 19x^{2};$$

$$T(v_{2}) = 3v_{1} + 0v_{2} - 2v_{3}$$

$$= 3(3x + 3x^{2}) - 2(3 + 7x + 2x^{2})$$

$$= -6 - 5x + 5x^{2};$$

$$T(v_3) = -v_1 + 5v_2 + 4v_4$$

= -(3x + 3x²) + 5(-1 + 3x + 2x²) + 4(3 + 7x + 2x²)
= 7 + 40x + 15x².

(c) Trước hết ta biểu diễn $p = 1 + x^2$ trong cơ sở B. Ta viết

$$1 + x^{2} = c_{1}v_{1} + c_{2}v_{2} + c_{3}v_{3}$$

= $c_{1}(3x + 3x^{2}) + c_{2}(-1 + 3x + 2x^{2}) + c_{3}(3 + 7x + 2x^{2})$
= $(-c_{2} + 3c_{3}) + (3c_{1} + 3c_{2} + 7c_{3})x$
+ $(3c_{1} + 2c_{2} + 2c_{3})x^{2}$

Do đó c_1 , c_2 , c_3 là nghiệm của hệ

$$\begin{cases} -c_2 + 3c_3 = 1\\ 3c_1 + 3c_2 + 7c_3 = 0\\ 3c_1 + 2c_2 + 2c_3 = 1 \end{cases}$$

Giải hệ này ta được

$$c_1 = 1, c_2 = -1, c_3 = 0.$$

Vậy có

2

$$\left[(1 + x^2) \right]_B = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Do đó

$$[T(1 + x^{2})]_{B} = A[(1 + x^{2})]_{B} = \begin{bmatrix} -2\\ 2\\ 8 \end{bmatrix}$$

Ta suy ra

$$T (1 + x^{2}) = -2v_{1} + 2v_{2} + 8v_{3}$$

= -2(3x + 3x^{2}) + 2(-1 + 3x + 2x^{2})
+ 8(3 + 7x + 2x^{2})
= 22 + 56x + 14x^{2}.

 $D(p_1) = D(1) = 1' = 0 = 0 + 0x + 0x^2$ $D(p_2) = D(x) = x' = 1 = 1 + 0x + 0x^2$ $D(p_3) = D(x^2) = (x^2)' = 2x = 0 + 2x + 0x^2$

Ta suy ra, vì B là cơ sở chính tắc của P_2 :

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

(b) $D(p_1) = D(2) = 2' = 0 = 0p_1 + 0p_2 + 0p_3;$
 $D(p_2) = D(2 - 3x) = (2 - 3x)' = -3 = -\frac{3}{2} \cdot 2$
 $= -\frac{3}{2}p_1 + 0p_2 + 0p_3;$

 $D(p_3) = D(2 - 3x + 8x^2) = (2 - 3x + 8x^2)' = -3 + 16x$

$$[D(p_1)]_B = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \qquad [D(p_2)]_B = \begin{bmatrix} -3/2\\0\\0 \end{bmatrix}.$$

Để tính $[D(p_3)]_B$ ta viết

$$-3 + 16x = \alpha p_1 + \beta p_2 + \gamma p_3 =$$

= $\alpha \cdot 2 + \beta (2 - 3x) + \gamma (2 - 3x + 8x^2)$

thì thấy α , β , γ là nghiệm của hệ

$$\begin{cases} 2\alpha + 2\beta + 2\gamma = -3 \\ -3\beta - 3\gamma = 16 \\ 8\gamma = 0 \end{cases}.$$

Giải hệ này ta được

$$\gamma = 0, \beta = -16/3, \alpha = 23/6.$$

Do đó

1, °, °,

$$[D(p_3)]_B = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 23/6 \\ -16/3 \\ 0 \end{bmatrix}$$

Ta suy ra

$$A = \begin{bmatrix} 0 & -3/2 & 23/6 \\ 0 & 0 & -16/3 \\ 0 & 0 & 0 \end{bmatrix}$$

(c) Vì trong câu (a), B là cơ sở chính tắc của P_2 nên

$$[D(6 - 6x + 24x^2)]_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ -6 \\ 24 \end{bmatrix} = \begin{bmatrix} -6 \\ 48 \\ 0 \end{bmatrix}$$

Do đó

 $D(6 - 6x + 24x^2) = -6.1 + 48x + 0x^2 = -6 + 48x$ trùng với kết quả tính trực tiếp :

 $D(6 - 6x + 24x^2) = (6 - 6x + 24x^2)' = -6 + 48x$

(d) Trong câu (b) B không phải cơ sở chính tắc của p_2 cho nên truớc hết ta phải biểu diễn $p = 6 - 6x + 24x^2$ trong cơ sở B. Ta có

$$6 - 6x + 24x^{2} = \alpha p_{1} + \beta p_{2} + \gamma p_{3}$$

= $\alpha(2) + \beta(2 - 3x) + \gamma(2 - 3x + 8x^{2})$
= $(2\alpha + 2\beta + 2\gamma) - (3\beta + 3\gamma)x + 8\gamma x^{2}$

Vậy α , β , γ là nghiệm của hệ

$$\begin{cases} 2\alpha + 2\beta + 2\gamma = 6\\ -3\beta - 3\gamma = -6\\ 8\gamma = 24 \end{cases}$$

Giải hệ này ta được

$$\gamma = 3, \beta = -1, \alpha = 1.$$

Do đó

$$[(6 - 6x + 24x^2)]_{B} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix},$$

Cho nên

$$[D(6 - 6x + 24x^2)]_B = \begin{bmatrix} 0 & -3/2 & 23/6 \\ 0 & 0 & -16/3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 13 \\ -16 \\ 0 \end{bmatrix}$$

Ta suy ra :

$$D(6 - 6x + 24x^2) = 13p_1 - 16p_2 + 0p_3$$

= 13.2 - 16(2 - 3x) = -6 + 48x,

cũng trùng với kết quả tính đạo hàm trực tiếp.

6.33. 1) Chú ý rằng B là cơ sở chính tắc. Do đó ánh xạ của T trong cơ sở B có ma trận :

$$A = \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}$$

Ma trận chuyển cơ sở từ B sang B
$$P = \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix}$$

Ta suy ra

$$P^{-1} = \frac{1}{11} \begin{bmatrix} 4 & 3\\ -1 & 2 \end{bmatrix}$$

Ma trận của T trong cơ sở B':

$$A^{\prime} = P^{-1}AP = \frac{1}{11} \begin{bmatrix} 4 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix}$$
$$= \frac{1}{11} \begin{bmatrix} -3 & -56 \\ -2 & 3 \end{bmatrix}$$

2) Bây giờ cơ sở B không phải chính tắc nữa. Ta có

 $T(u_1) = T((2, 3)) = (2 + 7.3, 3.2 - 4.3) = (23, -6)$ 127.0₃₀₆1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 $T(u_2) = T(4, -1) = (4 + 7(-1), 3.4 - 4(-1) = (-3, 16).$ Ta viết biểu diễn của $T(u_1)$ và $T(u_2)$ trong cơ sở B :

$$T(u_1) = (23, -6) = c_1u_1 + c_2u_2$$

= $c_1(2, 3) + c_2(4, -1)$
= $(2c_1 + 4c_2, 3c_1 - c_2);$
$$T(u_2) = (-3, 16) = b_1u_1 + b_2u_2$$

= $b_1(2, 3) + b_2(4, -1)$
= $(2b_1 + 4b_2, 3b_1 - b_2).$

Như vậy, (c_1, c_2) và (b_1, b_2) là nghiệm của hai hệ

	$2c_1 + 4c_2 = 23$	2 b 1	+	$4b_2$	=	- 3
1	$\begin{cases} 2c_1 + 4c_2 = 23 \\ 3c_1 - c_2 = -6 \end{cases}$	361	-	b_2	=	16

Giải hai hệ này ta được

 $c_1 = -1/14$ $c_2 = 81/14$ $b_1 = 61/14$ $b_2 = -41/14$. Vây

$$[T(u_1)]_B = \begin{bmatrix} -1/14\\ 81/14 \end{bmatrix}, \quad [T(u_2)]_B = \begin{bmatrix} 61/14\\ -41/14 \end{bmatrix}$$

Do đó ma trận của ánh xạ T trong cơ sở B là

$$A = \begin{bmatrix} -1/14 & 61/14 \\ 81/14 & -41/14 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -1 & 61 \\ 81 & -41 \end{bmatrix}$$

Bây giờ ta tìm ma trận chuyển cơ sở từ B sang B':

$$P = [[v_1]_B [v_2]_B]$$

$$v_1 = \alpha_1 u_1 + \alpha_2 u_2$$

$$(1, 3) = \alpha_1 (2, 3) + \alpha_2 (4, -1)$$

 α_1 và α_2 là nghiệm của hệ

$$\begin{vmatrix} 2\alpha_1 + 4\alpha_2 &= 1 \\ 3\alpha_1 - \alpha_2 &= 3 \end{vmatrix}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

317

$$v_2 = \beta_1 u_1 + \beta_2 u_2$$

(-1, -1) = $\beta_1(2, 3) + \beta_2(4, -1)$.

 β_1 và β_2 là nghiệm của hệ

$$\begin{aligned} 2\beta_1 + 4\beta_1 &= -1\\ 3\beta_1 - \beta_2 &= -1 \end{aligned}$$

Giải hai hệ này (có chung ma trận hệ số) ta được $\alpha_1 = 13/14, \ \alpha_2 = -3/14, \ \beta_1 = -5/14, \ \beta_2 = -1/14.$ Do đó

$$[v_1]_B = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 13/14 \\ -3/4 \end{bmatrix}, \quad [v_2]_B = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} -5/14 \\ -1/14 \end{bmatrix}$$

và có

$$P = \begin{bmatrix} 13/14 & -5/14 \\ -3/14 & -1/14 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 13 & -5 \\ -3 & -1 \end{bmatrix};$$

$$P^{-1} = -\frac{1}{2} \begin{bmatrix} -1 & 5 \\ 3 & 13 \end{bmatrix}.$$

$$A' = P^{-1}AP = -\frac{1}{2} \begin{bmatrix} -1 & 5 \\ 3 & 13 \end{bmatrix} \frac{1}{14} \begin{bmatrix} -1 & 61 \\ 81 & -41 \end{bmatrix} \frac{1}{14} \begin{bmatrix} -5 \\ -1 \end{bmatrix}$$

$$= -\frac{1}{2} \begin{bmatrix} 29 & -19 \\ 75 & -25 \end{bmatrix} \frac{1}{14} \begin{bmatrix} 13 & -5 \\ -3 & -1 \end{bmatrix}$$

$$= -\frac{1}{2} \begin{bmatrix} 31 & -9 \\ 75 & -25 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -31 & 9 \\ -75 & 25 \end{bmatrix}.$$

là ma trận của ánh xạ T trong cơ sở B'.

Chú ý. Làm trực tiếp, ta có $T(v_1) = T((1, 3)) = (1 + 7.3, 3 - 4.3) = (22, -9);$ $T(v_2) = T((-1, -1)) = (-1 + 7(-1), 3(-1) - 4(-1)) = (-8, 1).$ $T(v_1) = a_1v_1 + a_2v_2;$

www.VNMATH.com

$$T(v_2) = b_1 v_1 + b_2 v_2 ;$$

(22, -9) = $a_1(1, 3) + a_2(-1, -1) ;$
(-8, 1) = $b_1(1, 3) + b_2(-1, -1) ;$

thì (a_1, a_2) , (b_1, b_2) là nghiệm của hai hệ cùng ma trận hệ số

$$a_1 - a_2 = 22$$

 $3a_1 - a_2 = -9$
 $b_1 - b_2 = -8$
 $3b_1 - b_2 = 1$

Giải hai hệ này ta được

$$a_1 = -31/2, a_2 = -75/2, b_1 = 9/2, b_2 = 25/2.$$

Do đó

$$[T(v_1)]_{B^*} = \begin{bmatrix} -31/2 \\ -75/2 \end{bmatrix}, \ [T(v_2)]_{B^*} = \begin{bmatrix} 9/2 \\ 25/2 \end{bmatrix}.$$

Ta suy ra ma trận của ánh xạ T đối với cơ sở B' là

$$A' = \frac{1}{2} \begin{bmatrix} -31 & 9 \\ -75 & 25 \end{bmatrix}$$

trùng với kết quả trên.

3) Vì B là cơ sở chính tắc trong \mathbb{R}^3 nên ma trận của ánh xa T trong cơ sở B là :

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 7 \end{bmatrix}.$$

Ma trận chuyển cơ sở từ B sang B' là

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

°.°.

Ma trận nghịch đảo của P là

$$P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Do đó ma trận của ánh xạ T trong cơ sở B' là

$$A' = P^{-1}AP = \begin{bmatrix} 1 & 4 & 3 \\ -1 & -2 & -9 \\ 1 & 1 & 8 \end{bmatrix}.$$

4) Một điểm có tọa độ (x, y, z) trong không gian xyz chiếu trực giao lên mặt phẳng xy thành điểm (x, y, 0). Vậy có công thức xác định ánh xạ T:

$$T((x, y, z)) := (x, y, 0)$$
,

hay đổi kí hiệu :

$$T((x_1, x_2, x_3)) := (x_1, x_2, 0).$$

Với chú ý B là cơ sở chính tắc của \mathbb{R}^3 . Do đó ma trận của ánh xạ T trong cơ sở B là :

Ma trận chuyển cơ sở từ \tilde{B} sang \tilde{B}' là

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

 $A = \begin{bmatrix} 1 & \\ & 1 \\ & & 0 \end{bmatrix}.$

Do đó

$$P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Vậy ma trận của ánh xạ T trong cơ sở B' là

$$A' = P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

5) Theo đầu bài

 $T(u_1) = 5u_1 = 5u_1 + 0u_2;$ $T(u_2) = 5u_2 = 0u_1 + 5u_2.$

Vậy ma trận của T trong cơ sở B là

$$A = [[T(u_1)]_B [T(u_2)]_B] = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

Ma trận chuyển cơ sở từ B sang B' theo câu 2 bài này là

$$P = \frac{1}{14} \begin{bmatrix} 13 & -5 \\ -3 & -1 \end{bmatrix}$$

và

$$P^{-1} = -\frac{1}{2} \begin{bmatrix} -1 & 5\\ 3 & 13 \end{bmatrix}$$

Do đó ma trận :

$$A' = P^{-1}AP = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}.$$

Chú y. Tính trực tiếp (không qua cơ sở B) ta cũng được kết quả như vậy.

6) Theo đấu bài

 $T(p_1) = T(6 + 3x) = 6 + 3(x + 1) = 9 + 3x;$ $T(p_2) = T(10 + 2x) = 10 + 2(x + 1) = 12 + 2x.$

Ta biểu diễn $T(p_1)$ và $T(p_2)$ trong cơ sở B. Với $T(p_1)$ ta có

9 +
$$3x = \alpha p_1 + \beta p_2 = \alpha(6 + 3x) + \beta(10 + 2x)$$
.

Do đó α và β là nghiệm của

$$\begin{cases} 6\alpha + 10\beta = 9\\ 3\alpha + 2\beta = 3 \end{cases}$$

Ta suy ra

$$\alpha = \frac{2}{3}, \beta = \frac{1}{2}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

321

Bây giờ với $T(p_2)$.

 $12 + 2x = \gamma p_1 + \delta p_2 = \gamma (6 + 3x) + \delta (10 + 2x).$

Do đó y và δ là nghiệm của

 $\begin{cases} 6\gamma + 10\delta = 12\\ 3\gamma + 2\delta = 2 \end{cases}$

Ta suy ra

 $\gamma = -2/9, \quad \delta = 4/3.$

Vậy ma trận của ánh xạ T trong cơ sở B là

$$A = [[T(p_1)]_{B} [T(p_2)]_{B}] = \begin{bmatrix} 2/3 & -2/9 \\ 1/2 & 4/3 \end{bmatrix}$$

Bây giờ ta tìm ma trận chuyển cơ sở từ B sang B':

$$\boldsymbol{P} = [[\boldsymbol{q}_1]_B \ [\boldsymbol{q}_2]_B]$$

Ta viết

$$\boldsymbol{q}_1 = \alpha \boldsymbol{p}_1 + \beta \boldsymbol{p}_2$$

$$2 = \alpha(6 + 3x) + \beta(10 + 2x)$$

Do đó α và β là nghiệm của

$$\begin{cases}
6\alpha + 10\beta = 2 \\
3\alpha + 2\beta = 0
\end{cases}$$

Ta suy ra

 $\alpha = -2/9, \beta = 1/3$

. 0

Ta lại viết

$$q_2 = \gamma p_1 + \partial p_2$$

3 + 2x = $\gamma (6 + 3x) + \delta (10 + 2x)$

Do đó y và δ là nghiệm của hệ

$$\begin{vmatrix} 6\gamma + 10\delta &= 3\\ 3\gamma + 2\delta &= 2 \end{vmatrix}$$

Ta suy ra

$$\gamma = 7/9, \ \beta = -\frac{1}{6}$$

Vậy

$$[q_1]_B = \begin{bmatrix} -2/9\\ 1/3 \end{bmatrix}, \quad [q_2]_B = \begin{bmatrix} 7/9\\ -1/6 \end{bmatrix}.$$

Do đó ma trận chuyển cơ sở từ B sang B' là
$$P = \begin{bmatrix} -2/9 & 7/9\\ 1/3 & -1/6 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} -4 & 14\\ 6 & -3 \end{bmatrix}$$

nên có

$$P^{-1} = -\frac{18}{72} \begin{bmatrix} -3 & -14 \\ -6 & -4 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 3 & 14 \\ 6 & 4 \end{bmatrix}.$$

Do đó ma trận của Tđối với cơ sở B' là

$$A' = P^{-1}AP = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Chuý. Nếu tính trực tiếp A' không qua trung gian là cơ sở B thì cũng được kết quả như vậy.

6.34. Giả sử ma trận B đồng dạng với ma trận A. Khi đó tồn tại ma trận P không suy biến cùng cấp với A và B để có

$$B = P^{-1}AP.$$

Ta suy ra

$$B^{2} = (P^{-1}AP)^{2}$$

= (P^{-1}AP) (P^{-1}AP)
= P^{-1}A(PP^{-1})AP
= P^{-1}AAP = P^{-1}A^{2}P

Do đó B^2 đồng dạng với A^2 .

6.35. Giả sử A và B là hai ma trận cấp n đồng dạng. Khi đó tôn tại ma trận P cấp n không suy biến để

$$B = P^{-1}AP$$

Ta suy ra

$$AP = PB. \tag{6.8}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 $_{323}$

Trước hết ta xét một mệnh để mà ta gọi là một bổ đế.

Bổ dễ. Giả sử P không suy biến. Khi đó

1) Neu
$$E = \{u_1, u_2, ..., u_s\}, u_i \in \mathbf{R}^n$$
 là dộc lập tuyến tính thì

$$F = \{Pu_1, Pu_2, ..., Pu_s\}$$

cũng độc lập tuyến tính.

Nếu F độc lập tuyến tỉnh thì E cũng độc lập tuyến tỉnh.
 Chứng minh. 1) Giả sử E độc lập tuyến tỉnh. Xết điều kiện

$$c_1 P u_1 + c_2 P u_2 + \dots + c_s P u_s = \theta$$
 (6.9)

Ta suy ra

$$P(c_1u_1 + c_2u_2 + ... + c_su_s) = \theta.$$

Vì P không suy biến nên tồn tại P^{-1} và

$$c_1u_1 + c_2u_2 + \dots + c_su_s = P^{-1}\theta = \theta_s$$

tức là có

$$c_1 u_1 + c_2 u_2 + \dots + c_s u_s = \theta$$
 (6.10)

Nhưng ta đã giả sử E độc lập tuyến tính.

Cho nên từ (6.9) ta có

$$c_1 = c_2 = \dots = c_s = 0 \tag{6.11}$$

Như vậy là từ (6.9) ta suy ra (6.11).

Do đó F độc lập tuyến tính.

Bây giờ giả sử F độc lập tuyến tính.

Xét điều kiện (6.10). Ta suy ra

$$P(c_1u_1 + c_2u_2 + ... + c_su_s) = P\theta = \theta.$$

hay

$$c_1 P u_1 + c_2 P u_2 + \dots + c_s P u_s = \theta$$

Từ đó suy ra (6.9).

Nhưng ta đã giả sử F độc lập tuyến tính.

Cho nên từ đó ta có (6.11).

Như vậy là từ (6.10) ta suy ra (6.11)

Do đó E độc lập tuyến tính.

Bổ để chứng minh xong.

Bây giờ giả sử A và B là hai ma trận cấp n đồng dạng, nghĩa là tồn tại ma trận P cấp n không suy biến để có

$$B = P^{-1}AP$$

Ta suy ra

$$PB = AP \tag{6.12}$$

Gọi v_i , $i = \overline{1, n}$ là các vecto cột của B. Khi đó Pv_i , $i = \overline{1, n}$ là các vecto cột của PB. Ta có

$$P(B) = r(\{v_i\}), P(PB) = r(\{Pv_i\})$$

Vì P không suy biến nên theo bổ để trên

$$r(\{v_i\}) = r(\{Pv_i\})$$

Do đó

 $\rho(B) = \rho(PB)$

Nhưng theo (6.12), PB = AP nên có

$$\rho(B) = \rho(AP) = \rho((AP)^{t}) = \rho(P^{t}A^{t})$$

Vì P không suy biến nên P' cũng không suy biến, Do đó theo bổ để trên

$$\rho(P^{t}A^{t}) = \rho(A^{t}) = \rho(A).$$

Tóm lại, ta có

$$f(B) = f(A).$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

325

Chuong VII

TRỊ RIÊNG VÀ VECTƠ RIÊNG -DẠNG TOÀN PHƯƠNG

A. ĐỀ BÀI

7.1. TRỊ RIÊNG VÀ VECTƠ RIÊNG CỦA MA TRẬN

7.1. Tim các trị riêng và cơ sở của không gian riêng của các ma trận sau :

$1) \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$	$2) \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix} \qquad 3$	$\begin{pmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$
$4) \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$	$5) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad 6$	$3) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
7) $\begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$	$8) \begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{bmatrix}$	$9) \begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix}$
, -	$11) \begin{bmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{bmatrix}$	L J
$ \begin{array}{c} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{array} $	$14) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	$15) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
downloaded 60383.pd	rati ue Jul 31 08:	30:19101 2012 *

326

127.0.0.1

$$16) \begin{bmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{bmatrix}$$

7.2. TRI RIÊNG VÀ VECTO RIÊNG CỦA TOÁN TỬ TUYẾN TÍNH TRONG KHÔNG GIAN HỮU HẠN CHIỀU

7.2. Cho $T: P_2 \rightarrow P_2$ xác định bởi $T(a_o + a_1x + a_2x^2) =$

 $(5a_o + 6a_1 + 2a_2) - (a_1 + 8a_2)x + (a_o - 2a_2)x^2$

(a) Tìm các trị riêng của T.

(b) Tìm cơ sở của không gian riêng của T.

7.3. Chúng mình rằng $\lambda = 0$ là trị riêng của ma trận A khi và chỉ khi A suy biến.

7.3. VẤN ĐỀ CHÉO HÓA MA TRẬN

7.4. Chứng minh rằng các ma trận sau không chéo hóa được

1)
$$\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$
, 2) $\begin{bmatrix} 2 & -3 \\ 1 & -1 \end{bmatrix}$
3) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ 4) $\begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix}$
7.5. Tim ma trận *P* làm chéo hóa *A* và xác định *P*⁻¹*AP*
1) *A* = $\begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix}$ 2) *A* = $\begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$
3) *A* = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ 4) *A* = $\begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

7.6. Hỏi ma trận A dưới đây có chéo hóa được không. Nếu được thì tìm ma trận P làm chéo hóa A và xác định $P^{-1}AP$.

1)
$$A = \begin{bmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{bmatrix}$$

2) $\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$
3) $A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \end{bmatrix}$
4) $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

5)
$$A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$
 6) $A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 5 & -5 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$

7.7. Cho $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$ là toán tử tuyến tính

 $T(x_1, x_2) = (3x_1 + 4x_2, 2x_1 + x_2)$

Hãy tìm một cơ sở của \mathbf{R}^2 trong đó ma trận của T có dạng chéo. **7.8.** Cho $T : \mathbf{R}^3 \to \mathbf{R}^3$ là toán tử tuyến tính

 $T(x_1, x_2, x_3) = (2x_1 - x_2 - x_3, x_1 - x_3, -x_1 + x_2 + 2x_3)$ Hãy tìm một cơ sở của ${f R}^3$ trong đó ma trận của T có dạng chéo.

7.9. Cho
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

Hãy tính A^{10}

7.10. Cho
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Chúng minh :

(a) A chéo hóa được nếu $(a - d)^2 + 4bc > 0$.

b) A không chéo hóa được nếu $(a - d)^2 + 4bc < 0$. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 328

www.VNMATH.com

7.4. VẤN DẼ CHÉO HÓA TRỰC GIAO

7.11. Tìm ma trận P làm chéo hóa trực giao A và xác định $P^{-1}AP$:

7.12. Tìm ma trận làm chéo hóa trực giao

$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \quad b \neq 0.$$

7.5. DANG TOÀN PHƯƠNG

7.13. Nhận dạng và vẽ các đường bậc hai sau :
a)
$$2x^2 - 4xy - y^2 + 8 = 0$$
.
b) $x^2 + 2xy + y^2 + 8x + y = 0$.
c) $5x^2 + 4xy + 5y^2 = 9$.
d) $11x^2 + 24xy + 4y^2 - 15 = 0$.
e) $2x^2 + 4xy + 5y^2 = 24$.
f) $x^2 + xy + y^2 = 18$.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

g)
$$x^2 - 8xy + 7y^2 = 36$$
.
h) $5x^2 - 4xy + 8y^2 = 36$.
7.14. Nhận dạng và về các mặt bậc hai sau :
a) $2x_1^2 - 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 3x_3^2 = 16$.
b) $2xy + 2xz + 2yz - 6x - 6y - 4z = 0$.
c) $7x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz - 12x + 12y + 60z = 24$.
d) $2xy - 6x + 10y + z - 31 = 0$.
e) $2x^2 + 2y^2 + 5z^2 - 4xy - 2xz + 2yz + 10x - 26y - 2z = 0$

.... 8.0

B - BÀI GIẢI VÀ HƯỚNG DẤN

7.1. 1) Chó ma trận cấp hai

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

Phương trình đặc trưng của A :

$$\begin{bmatrix} 3-\lambda & 0\\ 8 & -1-\lambda \end{bmatrix} = 0 \Leftrightarrow (3-\lambda)(-1-\lambda) = 0$$

A có 2 giá trì riêng : $\lambda_1 = 3, \lambda_2 = -1$
Vécto riêng ứng trị riêng λ là $x = (x_1, x_2)$ thòa mãn
$$\begin{vmatrix} (3-\lambda)x_1 &= 0\\ 8x_1 - (1+\lambda)x_2 &= 0 \end{vmatrix}$$

Trường hợp $\lambda = \lambda_1 = 3$ ta có hệ
$$\begin{vmatrix} 0x_1 &= 0\\ 8x_1 - 4x_2 &= 0 \end{vmatrix}$$

Ta suy ra

 x_1 tùy ý. $x_2 = 2x_1$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 330

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ 2\mathbf{x}_1 \end{bmatrix} = \mathbf{x}_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 hay \mathbf{x}_1 (1, 2).

Vậy ứng trị riêng $\lambda_1 = 3$ có một véctơ riêng độc lập tuyến tính là (1, 2). Không gian riêng tương ứng là không gian con của \mathbf{R}^2 có số chiều bằng 1 và nhận véctơ (1, 2) làm cơ sở

Trường hợp
$$\lambda = \lambda_2 = -1$$
 tả có hệ
$$\begin{cases}
4x_1 = 0 \\
8x_1 + 0x_2 = 0
\end{cases}$$

Ta suy ra

$$x_1 = 0,$$
 x_2 tùy ý
 $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ hay x_2 (0, 1)

Vậy ứng trị riêng $\lambda_2 = -1$ có 1 véctơ riêng độc lập tuyến tính là (0, 1). Không gian riêng là không gian con của \mathbf{R}^2 có số chiều bằng 1 và có cơ sở là (0, 1).

2) Cho ma trận cấp hai

$$A = \begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$$

Phương trình đặc trưng của A :

$$\begin{vmatrix} 10-\lambda & -9\\ 4 & -2-\lambda \end{vmatrix} = 0 \Leftrightarrow (\lambda - 4)^2 = 0.$$

A có trị riêng : $\lambda_1 = \lambda_2 = 4$ là trị riêng bội 2. Véctơ riêng ứng trị riêng 4 là $x = (x_1, x_2)$ thỏa mãn

$$\begin{cases} (10 - 4)x_1 - 9x_2 = 0\\ 4x_1 + (-2 - 4)x_2 = 0 \end{cases}$$

hay

$$\begin{cases} 6x_1 - 9x_2 = 0 \\ 4x_1 - 6x_2 = 0 \end{cases}$$

ę,

Ta suy ra x_2 tùy ý, $x_1 = \frac{3}{2}x_2$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} \frac{3}{2} \\ 1 \end{bmatrix}.$$

Vậy ứng trị riêng bội hai $\lambda_1 = \lambda_2 = 4$ có một véctơ riêng độc lập tuyến tính là (3/2,1). Không gian riêng là không gian con của \mathbb{R}^2 có số chiếu bằng 1 và nhận véctơ (3/2, 1) làm cơ sở.

$$A = \begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}.$$

là ma trận cấp hai có phương trình đặc trưng

$$\begin{vmatrix} -\lambda & 3 \\ 4 & -\lambda \end{vmatrix} = \lambda^2 - 12 = 0$$

A có hai trị riêng : Trị riêng thứ nhất $\lambda_1 = \sqrt{12}$ có một véctơ riêng độc lập tuyến tính là $(3/\sqrt{12}, 1)$; không gian riêng tương ứng là không gian con của \mathbf{R}^2 có số chiếu bằng 1 và nhận véctơ $(3/\sqrt{12}, 1)$ làm cơ sở. Trị riêng thứ hai $\lambda_2 = -\sqrt{12}$ có 1 véctơ riêng độc lập tuyến tính là $(-3/\sqrt{12}, 1)$; không gian riêng tương ứng là không gian con của \mathbf{R}^2 có số chiếu bằng 1 và nhận véctơ $(-3/\sqrt{12}, 1)$ làm cơ sở.

4) Xét ma trận cấp hai

$$A = \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$$

Phương trình đặc trưng của A :

$$\begin{bmatrix} -2-\lambda & -7\\ 1 & 2-\lambda \end{bmatrix} = \lambda^2 + 3 = 0$$

không có nghiệm thực. Do đó A không có trị riêng thực. Nếu xét các trị riêng phức thì A có hai trị riêng

$$\lambda_1 = i\sqrt{3}, \lambda_2 = -i\sqrt{3}.$$

Vécto riêng tương ứng :

Trường hợp $\lambda = \lambda_1 = i\sqrt{3}$ ta có

$$\begin{cases} (-2 - i\sqrt{3})x_1 - 7x_2 = 0 \\ x_1 + (2 - i\sqrt{3})x_2 = 0. \end{cases}$$

Ta suy ra :

$$x_{2} \text{ tùy } \dot{y}, x_{1} = -(2 - i\sqrt{3}) x_{2}$$
$$x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -(2 - i\sqrt{3}) x_{2} \\ x_{2} \end{bmatrix} = x_{2} \begin{bmatrix} -(2 - i\sqrt{3}) \\ 1 \end{bmatrix}$$

Vậy ứng trị riêng $\lambda_1 = i\sqrt{3}$ có một véctơ riêng độc lập tuyến tính là $(-2 + i\sqrt{3}, 1)$; không gian riêng tương ứng là không gian con của \mathbf{C}^2 có số chiều bằng 1 và nhận véctơ $(-2 + i\sqrt{3}, 1)$ làm cơ sở

Trường hợp $\lambda = \lambda_2 = -i\sqrt{3}$ ta cũng làm như trên sẽ được một vécto riêng độc lập tuyến tính là $(-2 - i\sqrt{3}, 1)$; không gian riêng tương ứng là không gian con của \mathbf{C}^2 có số chiếu bằng 1 và nhận vécto $(-2 - i\sqrt{3}, 1)$ làm cơ sở.

5) Xét ma trận cấp hai

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Phương trình đặc trưng của A :

$$\begin{vmatrix} -\lambda & 0 \\ 0 & -\lambda \end{vmatrix} = \lambda^2 = 0.$$

A có trị riêng bội hai $\lambda_1 = \lambda_2 = 0$.

Vécto riêng tương ứng là $x = (x_1, x_2)$ thỏa mãn

$$\begin{cases} 0x_1 + 0x_2 = 0 \\ 0x_1 + 0x_2 = 0 \end{cases}$$

Do đó x_1 tùy ý, x_2 tùy ý :

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

0

Hai vecto (1, 0) và (0, 1) là độc lập tuyến tính vì

$$\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \Rightarrow \begin{cases} \alpha + 0 = 0 \\ 0 + \beta = 0 \end{cases}$$

tức là $\alpha = \beta = 0$.

Vây ứng trị riêng $\lambda_1 = \lambda_2 = 0$ có hai véctơ riêng độc lập tuyến tính là (1, 0) và (0, 1) không gian riêng là không gian con của \mathbf{R}^2 có số chiều = 2 tức là trùng với \mathbf{R}^2 nhận (1, 0) và (0, 1) làm cơ sở.

6) Cho ma trận cấp hai

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Phương trình đặc trưng của A:

$$\begin{vmatrix} 1-\lambda & 0\\ 0 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 = 0.$$

Do đó A có một trị riêng bội 2 là $\lambda_1 = \lambda_2 = 1$. Hệ phương trình xác định véctơ riêng $x : (x_1, x_2)$ tương ứng là

$$\begin{cases}
0x_1 + 0x_2 = 0 \\
0x_1 + 0x_2 = 0
\end{cases}$$

Hệ này trùng với hệ ở câu 5). Do đó ta cũng có kết quả như ở câu 5) :

Ứng trị riêng $\lambda_1 = \lambda_2 = 1$ có hai vécto riêng độc lập tuyến tính là (1, 0) và (0, 1).

Không gian riêng là không gian con của \mathbf{R}^2 có số chiếu bằng 2 tức là trùng với \mathbf{R}^2 và nhận (1, 0) và (0, 1) làm cơ sở.

www.VNMATH.com

7) Cho ma trận cấp ba

200

$$A = \begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$$

Phương trình đặc trưng của A

$$\begin{vmatrix} 2-\lambda & -1 & 2\\ 5 & -3-\lambda & 3\\ -1 & 0 & -2-\lambda \end{vmatrix} = -(\lambda + 1)^3 = 0$$

Do đó A có một trị riêng bội ba $\lambda = -1$ Vécto riêng tương ứng $x = (x_1, x_2, x_3)$ thòa mãn

$$\begin{cases} (2 - (-1))x_1 - x_2 + 2x_3 = 0\\ 5x_1 + (-3 - (-1))x_2 + 3x_3 = 0\\ -x_1 + (-2 - (-1))x_2 = 0 \end{cases}$$

Hệ này có nghiệm

$$x_1 = 0, x_3 = -x_2, x_2$$
 tùy ý.

C

Do đó

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \\ -x_2 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}.$$

Vậy ứng trị riêng bội ba $\lambda = -1$ có một véctơ riêng độc lập tuyến tính là (0, 1, -1).

Không gian riêng là không gian con của \mathbb{R}^3 , có số chiều bằng 1 và nhận vécto (0, 1, -1) làm cơ sở.

8) Cho ma trận cấp ba

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{bmatrix}$$

Phương trình đặc trưng của A là

$$\begin{vmatrix} -\lambda & 1 & 0 \\ -4 & 4 -\lambda & 0 \\ -2 & 1 & 2 -\lambda \end{vmatrix} = -(\lambda - 2)^3 = 0.$$

Do đó A có một trị riêng bội ba $\lambda = 2$. Véctơ riêng tương ứng $x = (x_1, x_2, x_3)$ thỏa mãn

$$\begin{cases} -2x_1 + x_2 = 0 \\ -4x_1 + 2x_2 = 0 \\ -2x_1 + x_2 = 0 \end{cases}$$

Hệ này có nghiệm

 x_1 và x_3 tùy ý, $x_2 = 2x_1$;

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Hai vécto (1, 2, 0) và (0, 0, 1) độc lập tuyến tính (bạn đọc tự kiểm tra). Vậy ứng trị riêng bội ba $\lambda = 2$ có hai vécto riêng độc lập tuyến tính (1, 2, 0) và (0, 0, 1).

Không gian riêng là không gian con của \mathbb{R}^3 , có số chiếu bằng 2 và nhận 2 vécto (1, 2, 0) và (0, 0, 1) làm cơ sở.

9) Cho ma trận cấp ba

$$A = \begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix}$$

Phương trình đặc trưng của A là

$$\begin{cases} 4 - \lambda & -5 & 2 \\ 5 & -7 - \lambda & 3 \\ 6 & -9 & 4 - \lambda \end{cases} = \lambda^2 (-\lambda + 1) = 0$$

có hai trị riêng $\lambda_1 = \lambda_2 = 0$ bội hai và $\lambda_3 = 1$ đơn. Véctơ riêng tương ứng trị riệng λ là $x = (x_1, x_2, x_3)$ như sau :

Trường hợp $\lambda_1 = \lambda_2 = 0$ nó thỏa mãn

4x ₁	-	5x22	+	2x ₃	*	0
5α ₁	-	7x ₂	+	3x ₃	=	0
6x ₁	_	9x ₂	+	4x ₃	=	0

Hệ thuân nhất này có nghiệm không tâm thường :

$$x_1$$
 tùy ý, $x_2 = 2x_1, x_3 = 3x_1$

Do đố

$$x = (x_1, x_2, x_3) = (x_1, 2x_1, 3x_1) = x_1(1, 2, 3).$$

Vây ứng trị riêng bội hai $\lambda = \lambda_1 = \lambda_2 = 0$ có một véctơ riêng độc lập tuyến tính là (1, 2, 3); không gian riêng tương ứng là không gian con của \mathbb{R}^3 có số chiều bằng 1 và nhận véctơ (1, 2, 3) làm cơ sở.

Trường hợp $\lambda = \lambda_3 = 1$ ta có

	3x1	-	5x2	÷	2x ₃	×	0.
ł	5x ₁	-	8x2	+	3x ₃	=	0
	6 x 1	-	5x2 8x2 9x2	+	3x ₃	Ŧ	0

Hệ thuẩn nhất này có nghiệm

 x_3 tùy ý, $x_2 = x_3$, $x_1 = x_3$.

Vậy ứng trị riêng $\lambda_3 = 1$ có 1 véctơ riêng độc lập tuyến tính là (1, 1, 1). Không gian riêng tương ứng là không gian con của \mathbf{R}^3 có số chiều bằng 1 và nhận véctơ (1, 1, 1) làm cơ sở.

10) Cho

$$A = \begin{bmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{bmatrix}$$

là ma trận cấp ba có phương trình đặc trưng

$$\begin{vmatrix} 1-\lambda & -3 & 3\\ -2 & -6-\lambda & 13\\ -1 & -4 & 8-\lambda \end{vmatrix} = (1-\lambda)^3 = 0$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 22-вт.тсс.т1 337 Vậy A có một trị riêng bội ba $\lambda = 1$.

Vécto riêng tương ứng $x = (x_1, x_2, x_3)$ thòa mãn

$$\begin{cases} (1-1)x_1 - 3x_2 + 3x_3 = 0\\ -2x_1 + (-6 - 1)x_2 + 13x_3 = 0\\ -x_1 - 4x_2 + (8 - 1)x_3 = 0. \end{cases}$$

Hệ thuần nhất này có nghiệm

$$x_3$$
 tùy ý, $x_2 = x_3$, $x_1 = 3x_3$.

Do đó

$$x = (x_1, x_2, x_3) = x_3(3, 1, 1).$$

Vậy ứng trị riêng bởi ba $\lambda = 1$ có 1 véctơ riêng độc lập tuyến tính là (3, 1, 1). Không gian riêng tương ứng là không gian con của \mathbb{R}^3 có số chiều bằng 1 và nhận véctơ (3, 1, 1) làm cơ sở.

11) Cho

$$A = \begin{bmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{bmatrix}$$

là ma trận cấp ba có phương trình đặc trưng

$$\begin{bmatrix} 1-\lambda & -3 & 4\\ 4 & -7-\lambda & 8\\ 6 & -7 & 7-\lambda \end{bmatrix} = -(\lambda + 1)^2(\lambda - 3) = 0$$

Vậy A có hai trị riêng khác nhau : $\lambda_1 = 3$, $\lambda_2 = \lambda_3 = -1$. Vécto riêng tương ứng trị riêng λ là $x = (x_1, x_2, x_3)$ như sau :

Trường hợp $\lambda = \lambda_1 = 3$ có 1 véctơ riêng độc lập tuyến tính là (1, 2, 2).

Truồng hợp $\lambda = \lambda_2 = \lambda_3 = -1$. Ta có $\begin{cases}
(1 + 1)x_1 - 3x_2 + 4x_3 = 0 \\
4x_1 + (-7 + 1)x_2 + 8x_3 = 0 \\
6x_1 - 7x_2 + (7 + 1)x_3 = 0.
\end{cases}$

Hệ này có nghiệm : x_3 tùy ý, $x_2 = 2x_3$, $x_1 = x_3$. Do đó $x = (x_3, 2x_3, x_3) = x_3(1, 2, 1)$, nên chỉ có một vécto riêng độc lập tuyến tính là (1; 2, 1). Vậy không gian riêng ứng $\lambda_2 = \lambda_3 = -1$ là không gian con của \mathbf{R}^3 có số chiều bằng 1 và nhận vécto (1, 2, 1) làm cơ sở. Còn không gian riêng ứng $\lambda = \lambda_1 = 3$ là không gian con của \mathbf{R}^3 có số chiều bằng 1 và nhận vécto (1, 2, 2) làm cơ sở.

12) Cho

$$A = \begin{bmatrix} 7 & -12 & 6\\ 10 & -19 & 10\\ 12 & -24 & 13 \end{bmatrix}$$

là ma trận cấp ba có phương trình đặc trưng

$$\begin{bmatrix} 7-\lambda & -12 & 6\\ 10 & -19-\lambda & 10\\ 12 & -24 & 13-\lambda \end{bmatrix} = -(\lambda - 1)^2(\lambda + 1) = 0$$

Vậy A có hai trị riêng khác nhau $\lambda_1 = \lambda_2 = 1$ bội hai và $\lambda_3 = -1$ đơn.

Vécto riêng ứng $\lambda_1 = \lambda_2 = 1$ là $x = (x_1, x_2, x_3)$ thỏa mãn

$$(7 - 1)x_1 - 12x_2 + 6x_3 = 0$$

$$10x_1 - 20x_2 + 10x_3 = 0$$

$$12x_1 - 24x_2 + 12x_3 = 0$$

Hệ này có nghiệm

$$\mathbf{x}_{2}, \mathbf{x}_{3} \text{ try y } \mathbf{x}_{1} = 2\mathbf{x}_{2} - \mathbf{x}_{3}$$
$$\mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 2x_{2} - x_{3} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 2x_{2} \\ x_{2} \\ 0 \end{bmatrix} + \begin{bmatrix} -x_{3} \\ 0 \\ x_{3} \end{bmatrix} = \mathbf{x}_{2} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \mathbf{x}_{3} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

Hai vécto (2, 1, 0) và (-1, 0, 1) độc lập tuyến tính (bạn đọc tự kiểm tra). Vậy ứng trị riêng bội hai $\lambda_1 = \lambda_2 = 1$ có 2 vécto riêng độc lập tuyến tính (2, 1, 0) và (-1, 0, 1). Không gian riêng là không gian con của \mathbf{R}^3 có số chiều bằng 2 và nhận (2, 1, 0) và (-1, 0, 1) làm cơ sở.

Vecto riêng ứng $\lambda_3 = -1$ là $x = (x_1, x_2, x_3)$ thỏa mãn

$$(7 + 1)x_1 - 12x_2 + 6x_3 = 0$$

$$10x_1 - (19 - 1)x_2 + 10x_3 = 0$$

$$12x_1 - 24x_2 + (13 + 1)x_3 = 0$$

Hệ này có nghiệm

$$x_{3} \text{ tùy } y, x_{2} = \frac{5}{6} x_{3}, x_{1} = \frac{1}{2} x_{3}.$$
$$x = \left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array} \right] = \left[\begin{array}{c} 1/2 x_{3} \\ 5/6 x_{3} \\ x_{3} \end{array} \right] = \frac{1}{6} x_{3} \left[\begin{array}{c} 3 \\ 5 \\ 6 \end{array} \right].$$

Vậy ứng trị riêng đơn $\lambda_2 = -1$ có một véctơ riêng độc lập tuyến tính là (3, 5, 6). Vậy

Không gian riêng là không gian con của \mathbb{R}^3 , có số chiếu bằng 1 và nhận vécto (3, 5, 6) làm cơ sở.

13) Cho

$$A \approx \begin{bmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{bmatrix}$$

là ma trận cấp ba, có phương trình đặc trưng

$$\begin{vmatrix} 4 - \lambda & -5 & 7 \\ 1 & -4 - \lambda & 9 \\ -4 & 0 & 5 - \lambda \end{vmatrix} = (1 - \lambda)(\lambda^2 - 4\lambda + 13) = 0.$$

Do đó A có một trị riêng thực $\lambda_1 = 1$ và hai trị riêng phức $\lambda_2 = 2 + 3i$ và $\lambda_3 = 2 - 3i$.

Vécto riêng tương ứng x = (x₁, x₂, x₃) trong trường hợp $\lambda = \lambda_1 = 1$ thỏa mãn

 $\begin{cases} (4 - 1)x_1 - 5x_2 + 7x_3 = 0\\ x_1 + (-4 - 1)x_2 + 9x_3 = 0\\ -4x_1 + (5 - 1)x_3 = 0 \end{cases}$

Hệ này có nghiệm

$$x_{3} \text{ tuy y}, \quad x_{2} = 2x_{3}, \quad x_{1} = x_{3}.$$

$$x = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} x_{3} \\ 2x_{3} \\ x_{3} \end{bmatrix} = x_{3} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

Do đơ

Vậy ứng trị riêng thực $\lambda_1 = 1$ có một véctơ riêng độc lập tuyến tính là (1, 2, 1). Không gian riêng tương ứng là không gian con của \mathbb{C}^3 có số chiều bằng 1 và nhận véctơ (1, 2, 1) làm cơ sở.

Trong trường hợp $\lambda = \lambda_2 = 2 + 3i$ ta có $\begin{cases}
(2 - 3i)x_1 - 5x_2 + 7x_3 = 0 \\
x_1 + (-6 - 3i)x_2 + 9x_3 = 0 \\
-4x_1 + (3 - 3i)x_3 = 0
\end{cases}$

Hệ này có nghiệm

$$x_3$$
 tùy ý, $x_2 = \frac{1}{4} (5-3i)x_3$, $x_1 = \frac{1}{4} (3-3i)x_3$.

Do đó

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} (3 - 3i)x_3 \\ \frac{1}{4} (5 - 3i)x_3 \\ \frac{1}{4} x_3 \end{bmatrix} = \frac{x_3}{4} \begin{bmatrix} 3 - 3i \\ 5 - 3i \\ 4 \end{bmatrix} = \frac{x_3}{4} (3 - 3i, 5 - 3i, 4).$$

Vậy ứng trị riêng $\lambda = \lambda_2 = 2 + 3i$ có một véctơ riêng độc lập tuyến tính là (3 - 3i, 5 - 3i, 4). Không gian riêng tương ứng là không gian con của C³ có số chiều bằng 1 và nhận véctơ (3 - 3i, 5 - 3i, 4) làm cơ sở.

Trường hợp $\lambda = \lambda_3 = 2 - 3i$, ta làm như trên sẽ được một véctơ riêng độc lập tuyến tính là (3 + 3i, 5 + 3i, 4).

Không gian riêng tương ứng là không gian con của \mathbb{C}^3 có số chiếu bằng 1 và nhận vécto (3 + 3i, 5 + 3i, 4) làm cơ sở. 14) Cho

là ma trận cấp 4 có phương trình đặc trưng

$$\begin{vmatrix} 1-\lambda & 0 & 0 & 0 \\ 0 & -\lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & 0 & 1-\lambda \end{vmatrix} = \lambda^2 (1-\lambda)^2 = 0.$$

Do đó A có hai trị riêng khác nhau

$$\lambda_1 = \lambda_2 = 0 \text{ bội } 2;$$

$$\lambda_3 = \lambda_4 = 1 \text{ bội } 2.$$

Vécto riêng $x = (x_1, x_2, x_3, x_4)$ ứng trị riêng $\lambda_1 = \lambda_2 = 0$ thỏa mãn

$$\begin{cases} x_1 = 0 \\ 0x_2 = 0 \\ 0x_3 = 0 \\ x_1 = 0 \\ x_4 = 0 \end{cases}$$

Hệ có nghiệm

 $x_1 = 0, x_2$ tùy ý, x_3 tùy ý, $x_4 = 0$.

Do đó

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \\ x_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ x_3 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Hai vécto (0, 1, 0, 0) và (0, 0, 1, 0) độc lập tuyến tính (ban doc tự kiểm tra). Vậy ứng trị riêng bội hai $\lambda_1 = \lambda_2 = 0 \operatorname{co} 2$ vécto riêng độc lập tuyến tính là

$$(0, 1, 0, 0)$$
 và $(0, 0, 1, 0)$

Không gian riêng là không gian con của \mathbf{R}^4 , có số chiếu bằng 2 và nhận hai véctơ trên làm cơ sở.

Vécto riêng ứng trị riêng $\lambda_3 = \lambda_4 = 1$ là $x = (x_1, x_2, x_3, x_4)$ thỏa mãn

 $\begin{cases} (1 - 1)x_1 \\ -x_2 &= 0 \\ -x_3 &= 0 \\ + (1 - 1)x_4 &= 0 \end{cases}$

Hệ này có nghiệm

$$x_1 = 0, x_2 = 0, x_3 = 0, x_4$$
 tùy ý.

Do đó

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Vậy ứng trị riêng bội hai $\lambda_3 = \lambda_4 = 1$ có một vécto riêng là độc lập tuyến tính là (0, 0, 0, 1).

Không gian riêng tương ứng là không gian con của \mathbb{R}^4 , có số chiếu bằng 1 và có cơ sở là (0, 0, 0, 1)

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

15) Cho

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

là ma trận cấp 4 có phương trình đặc trưng

$$\begin{vmatrix} 1-\lambda & 0 & 0 & 0 \\ 0 & -\lambda & 0 & 0 \\ 1 & 0 & -\lambda & 0 \\ 0 & 0 & 0 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 \lambda^2 = 0$$

 \Rightarrow có 2 trị riêng $\lambda_1 = \lambda_2 = 0$ bội hai và $\lambda_3 = \lambda_4 = 1$ bội hai. Véctơ riêng ứng $\lambda_1 = \lambda_2 = 0$ là $x = (x_1, x_2, x_3, x_4)$ thỏa mãn

x ₁			= 0
	0x2		= 0
x ₁		+ 0x3	´ = 0
			$x_4 = 0$

Hệ này có nghiệm

$$x_1 = 0, x_2$$
 tùy ý, x_3 tùy ý, $x_4 = 0$.

Do đó

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \\ x_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ x_3 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Hai vécto (0, 1, 0, 0) và (0, 0, 1, 0) độc lập tuyến tính (bạn đọc tự kiểm tra). Vậy ứng trị riêng $\lambda_1 = \lambda_2 = 0$ có hai vécto riêng độc lập tuyến tính là (0, 1, 0, 0) và (0, 0, 1, 0).

Không gian riêng tương ứng là không gian con của \mathbb{R}^4 có số chiếu bảng 2 và nhận hai véctợ (0, 1, 0, 0) và (0, 0, 1, 0) làm cơ sở.

Vécto riêng $x = (x_1, x_2, x_3, x_4)$ ứng trị riêng $\lambda_3 = \lambda_4 = 1$ thỏa mãn

Hệ này có nghiệm

$$x_1$$
 tùy ý, $x_2 = 0$, $x_3 = x_1$, x_4 tùy ý.

Do đó

$$x = \begin{bmatrix} x_1 \\ 0 \\ x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ x_4 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Hai vécto (1, 0, 1, 0) và (0, 0, 0, 1) độc lập tuyến tính (bạn đọc tự kiểm tra). Vậy ứng trị riêng $\lambda_3 = \lambda_4 = 1$ có hai vécto riêng độc lập tuyến tính là (1, 0, 1, 0) và (0, 0, 0, 1).

Không gian riêng tương ứng là không gian con của \mathbb{R}^4 , có số chiều bàng 2 và nhận 2 véctơ (1, 0, 1, 0) và (0, 0, 0, 1) làm cơ sở.

16) Cho ma trận cấp 4

$$A = \begin{bmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{bmatrix}$$

Phương trình đặc trưng là

$$\begin{vmatrix} 3-\lambda & -1 & 0 & 0\\ 1 & 1-\lambda & 0 & 0\\ 3 & 0 & 5-\lambda & -3\\ 4 & -1 & 3 & -1-\lambda\\ 127.0.0.1 \text{ downloaded } 60383.pdf \text{ at Tue Jul 31} \\ 08:30:19 \text{ ICT 2012} \end{vmatrix}$$

Do đó A có một trị riêng bội $4 : \lambda = 2$.

Vécto riêng $x = (x_1, x_2, x_3, x_4) \in \mathbf{R}^4$ ứng trị riêng $\lambda = 2$ thỏa mãn

 $\begin{cases} (3 - 2)x_1 - x_2 &= 0\\ x_1 + (1 - 2)x_2 &= 0\\ 3x_1 &+ (5 - 2)x_3 - 3x_4 &= 0\\ 4x_1 - x_2 &+ 3x_3 + (-1 - 2)x_4 &= 0 \end{cases}$

Hệ này có nghiệm

 x_4 tùy ý, x_3 tùy ý, $x_2 = -x_3 + x_4$, $x_1 = -x_3 + x_4$. Do đó

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_3 + x_4 \\ -x_3 + x_4 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \\ 0 \end{bmatrix} + \begin{bmatrix} x_4 \\ x_4 \\ 0 \\ x_4 \end{bmatrix} = -x_3 \begin{bmatrix} +1 \\ +1 \\ -1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

Hai vécto (1, 1, -1, 0) và (1, 1, 0, 1) độc lập tuyến tính (bạn đọc kiểm tra lại). Vậy ứng trị riêng bội $4 : \lambda = 2$ có hai vécto riêng độc lập tuyến tính là (1, 1, -1, 0) và (1, 1, 0, 1).

Không gian riêng tương ứng là không gian con của \mathbb{R}^4 , có số chiều bằng 2 và nhận hai véctơ (1, 1, -1, 0) và (1, 1, 0, 1) làm cơ sở.

7.2. Muốn tìm trị riêng của ánh xạ T, trước hết ta tìm ma trận của ánh xạ T, rồi tìm trị riêng của ma trận đó, đó là trị riêng của T.

Cơ sở ở đây là cơ sở chính tắc trong $P_2: B = \{1, x, x^2\}$. Ta có

 $T(1) = 5 + x^2 = 5 + 0x + x^2$ $T(x) = 6 - x = 6 - x + 0x^2$

$$T(x^2) = 2 - 8x - 2x^2$$

Vậy ma trận của ánh xạ T là

$$A = \begin{bmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{bmatrix}$$

Phương trình đặc trưng là

$$\begin{vmatrix} 5-\lambda & 6 & 2\\ 0 & -1-\lambda & -8\\ 1 & 0 & -2-\lambda \end{vmatrix} = (\lambda - 3)(-\lambda^2 - \lambda + 12)$$
$$= (\lambda - 3)^2(\lambda + 4) = 0$$

$$= (x - 3) (x + 4) = 0;$$

do đó có hai trị riêng $\lambda_1 = -4$ (đơn) và $\lambda_2 = 3$ (bội hai).

Để tìm các véctơ riêng của ánh xạ T, ta chú ý một vài điều. Ta đã biết phương trình xác định trị riêng của ma trận A là

$$Ax = \lambda x.$$

Phương trình xác định trị riêng của toán tử tuyến tính $T: P_2 \rightarrow P_2$ là (xem định nghĩa 7.2.1, Th<c/l):

$$T(p) = \lambda p, p \in P_2.$$

Nhưng sau khi xây dựng được ma trận của T thì có :

$$[T(p)]_B = A[p]_{B},$$

do đó phượng trình $T(p) = \lambda p$ viết

$$[T(p)]_B = \lambda[p]_B$$

tức là

$$A[p]_B = \lambda[p]_B,$$

đó lại là phương trình xác định trị riêng của ma trận A. Chính vì thế ta đã lấy trị riêng của ma trận A làm trị riêng của toán tử T như ở trên.

Vậy vécto riêng của T sẽ là vécto $[p]_{R}$ thỏa mãn

$$(A - \lambda I) [p]_{B} = 0.$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Tim $p \in P_2$ ở dạng $p = a_0 + a_1 x + a_2 x^2$ ta sẽ có $[p]_B = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$

và do đó phương trình xác định vécto riêng sẽ là

$$(A - \lambda I) \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

tức là

$$\begin{bmatrix} 5-\lambda & 6 & 2\\ 0 & -1-\lambda & -8\\ 1 & 0 & -2-\lambda \end{bmatrix} \begin{bmatrix} a_{\nu}\\ a_{1}\\ a_{2} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Với $\lambda = -4$ ta có

Hệ này có nghiệm khác không

$$a_{\alpha} = -2, \qquad a_1 = \frac{8}{3}, \qquad a_2 = 1.$$

Vây ứng trị riêng $\lambda_1 = -4$ có một véctơ riêng độc lập tuyến tính

$$[p]_{R} = \begin{vmatrix} -2 \\ 8/3 \\ 1 \end{vmatrix} = -2 + 8/3x + x^{2}$$

Không gian riêng tương ứng là không gian con của P_2 có số chiều bằng I và nhận vécto $-2 + (8/3)x + x^2$ làm cơ sở. Với $\lambda = 3$ ta có hê

 $\begin{bmatrix} 5 - 3 & 6 & 2 \\ 0 & -1 - 3 & -8 \\ 1 & 0 & -2 - 3 \end{bmatrix} \begin{bmatrix} a_{i} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:80:19 ICT 2012 348 Hệ này có nghiệm khác không

$$a_2 = 1, a_1 = -2, a_0 = 5.$$

Vậy ứng trị riêng bội hai $\lambda_1 = 3$ có một véc
tơ riêng độc lập tuyến tính

$$[p]_B = \begin{bmatrix} 5\\-2\\1 \end{bmatrix} = 5 - 2x + x^2.$$

Không gian riêng tương ứng là không gian con của P_2 có số chiếu bằng 1 và nhận vécto 5 – $2x + x^2$ làm cơ sở.

7.3. Giả sử $\lambda = 0$ là trị riêng của ma trận A ; lúc đó phương trình đặc trưng

$$\det(A - \lambda I) = 0.$$

có nghiệm $\lambda = 0$. Do đó

$$\det(A) = 0.$$

Vậy A suy biến.

Ngược lại, giả sử ma trận A suy biến thì có

 $\det(A) = 0.$

Vậy 0 là nghiệm của phương trình đặc trưng

$$\det(A - \lambda I) = 0.$$

Do đó $\lambda = 0$ là trị riêng của ma trận A.

7.4. Diều kiện cần và đủ để ma trận vuông A cấp n chéo hóa được là nó có n véctơ riêng độc lập tuyến tính (xem định lí 7.3.1, Thcc/1).

Như vậy nếu ma trận A cấp n không có đủ n véctơ riêng độc lập tuyến tính thì nó không chéo hóa được.

1) Cho ma trận cấp 2

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$

Tri riêng :

$$\begin{vmatrix} 2-\lambda & 0\\ 1 & 2-\lambda \end{vmatrix} = (2-\lambda)^2 \Rightarrow \lambda = 2, \text{ bol } 2.$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Vécto riêng :

$$\begin{cases} (2 - 2)x_1 + 0x_2 = 0 \\ x_1 + (2 - 2)x_2 = 0 \\ x_1 = 0, x_2 \text{ tùy } y \\ (x_1, x_2) = (0, x_2) = x_2(0, 1). \end{cases}$$

Vậy chỉ có một véc
tơ riêng độc lập tuyến tính cho nên A không chéo hóa được

2) Cho ma trận cấp 2.

$$A = \begin{bmatrix} 2 & -3 \\ 1 & -1 \end{bmatrix}$$

Trį riêng :

$$\begin{vmatrix} 2-\lambda & -3\\ 1 & -1-\lambda \end{vmatrix} = \lambda^2 - \lambda + 1 = 0$$

 \Rightarrow Không có trị riêng thực. Cho nên ma trận A này không chéo hóa được trong trường số thực.

3) Cho ma trận cấp ba

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

Tri riêng :

$$\begin{vmatrix} 3-\lambda & 0 & 0 \\ 0 & 2-\lambda & 0 \\ 0 & 1 & 2-\lambda \end{vmatrix} = (3-\lambda)(2-\lambda)^2 = 0$$

 \Rightarrow có hai trị riêng λ_1 = 3, λ_2 = 2 bội 2. Vecto riêng :

 $\lambda_1 = 3$ có một véctơ riêng tương ứng là (1, 0, 0) ;

 $\lambda_2 = 2$ có một véctơ riêng tương ứng là (0, 0, 1).

Hai vecto riêng này độc lập tuyến tính. Nhưng A là ma trận cấp 3 mà chỉ có 2 vécto riêng độc lập tuyến tính nên A không chéo hóa được.

4) Cho ma trận cấp 3

$$A = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -1 & 13 & -1 \end{bmatrix}$$

Trị riêng :

$$\begin{vmatrix} -1 - \lambda & 0 & 1 \\ -1 & 3 - \lambda & 0 \\ -1 & 13 & -1 - \lambda \end{vmatrix} = -(\lambda - 2)(\lambda^2 + \lambda + 1) = 0,$$

có một trị riêng thực $\lambda = 2$ và hai trị riêng phúc (liên hợp) là nghiệm của

$$\lambda^2 + \lambda + 1 = 0.$$

Vecto riêng : Úng mỗi trị riêng phúc ta sẽ có vecto riêng phúc. Còn ứng với trị riêng thực $\lambda = 2$ thỉ vecto riêng $x = (x_1, x_2, x_3)$ thỏa mãn

$$\begin{cases}
-3x_1 + x_3 = 0 \\
-x_1 + x_2 = 0 \\
-x_1 + 13x_2 - 3x_3 = 0
\end{cases}$$

Hệ này chỉ có nghiệm $(0, 0, x_3), x_3$ tùy ý.

Vậy ma trận A cấp 3 chỉ có một vecto riêng thực độc lập tuyến tính, nên A không chéo hóa được trong trường số thực. 7.5. 1)

$$A = \begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix}.$$

Tri riêng :

$$\begin{vmatrix} -14 - \lambda & 12 \\ -20 & 17 - \lambda \end{vmatrix} = \lambda^2 - 3\lambda + 2 = 0.$$

Cơ hai trị riêng $\lambda_1 = 1$ và $\lambda_2 = 2$. Vector iêng :

$$- \text{ Ung } \lambda_1 = 1 : \qquad \begin{cases} -15 \, \mathbf{x}_1 + 12 \, \mathbf{x}_2 = 0 \\ -20 \, \mathbf{x}_1 + 16 \, \mathbf{x}_2 = 0 \end{cases}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Ta suy ra một vecto riêng $(4/5, 1) = v_1$

 $- \text{ Úng } \lambda_2 = 2 : \qquad \begin{cases} -16 \, \mathbf{x}_1 + 12 \, \mathbf{x}_2 = 0 \\ -20 \, \mathbf{x}_1 + 15 \, \mathbf{x}_2 = 0 \end{cases}$

Ta suy ra một vectơ riêng $(3/4, 1) = v_2$. Hai vecto v_1 , v_2 độc lập tuyến tính (bạn đọc tự kiểm tra). Vậy ma trận P làm chéo hóa A là

$$P = \begin{bmatrix} 4/5 & 3/4 \\ 1 & 1 \end{bmatrix}.$$

Đống thời

$$P^{-1} AP = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$
$$A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$

2)

Tri riêng :

$$\begin{vmatrix} 1-\lambda & 0 \\ 6 & -1-\lambda \end{vmatrix} = -(1-\lambda)(1+\lambda) = 0$$

Có hai trị riêng $\lambda_1 = 1, \lambda_2 = -1$

Vecto riêng :

- Ứng $\lambda_1 = 1$ có một vectơ riêng $v_1 = (1/3; 1);$ - Ứng $\lambda_2 = -1$ có một vectơ riêng $v_2 = (0, 1).$ Hai vectơ v_1, v_2 độc lập tuyến tính (bạn đọc tự kiểm tra) Vậy ma trận P làm chéo hóa A là

$$P \Rightarrow \begin{bmatrix} 1/3 & 0\\ 1 & 1 \end{bmatrix}$$

Đồng thời

$$P^{-1} AP = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

3)

www.VNMATH.com

Tri riêng : $\begin{vmatrix} 1-\lambda & 0 & 0 \\ 0 & 1-\lambda & 1 \\ 0 & 1 & 1-\lambda \end{vmatrix} = \lambda (1-\lambda)(\lambda-2) = 0$ Có 3 trị riêng khác nhau $\lambda_1 = 0, \quad \lambda_2 = 1, \qquad \lambda_3 = 2$ Vecto riêng : $\lambda_1 = 0$ $v_1 = (0, 1, -1)$ $\lambda_2 = 1$ $v_2 = (1, 0, 0)$ $\lambda_2 = 2$ $v_3 = (0, 1, 1)$ Vậy ma trận P làm chéo hóa A là $P = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$ đồng thời $P^{-1} AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ 4) $A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ Tri riêng : $\begin{vmatrix} 2-\lambda & 0 & -2 \\ 0 & 3-\lambda & 0 \\ 0 & 0 & 3-\lambda \end{vmatrix} = (2-\lambda)(3-\lambda)^2 = 0$ Có hai trị riêng $\lambda_1 = 2, \lambda_2 = 3$ (bội hai) Vecto riêng : $\lambda_1 = 2$ $\nu_1 = (1, 0, 0)$ $\lambda_2 = 3$ $v_2 = (0, 1, 0)$ và $v_3 = (-2, 0, 1)$. 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 23-BT.TCC.T1

Vậy có đủ 3 vecto riêng, chúng độc lập tuyến tính vì

$$\begin{vmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$$

Vậy A chéo hoá được và ma trận P làm chéo hóa A là

$$P = \begin{vmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Đồng thời

$$P^{-1} AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

7.6. 1)

$$A = \begin{bmatrix} 19 & -9 & -6\\ 25 & -11 & -9\\ 17 & -9 & -4 \end{bmatrix}$$

Trị riêng :

$$\begin{vmatrix} 29 - \lambda & -9 & -6 \\ 25 & -11 - \lambda & -9 \\ 17 & -9 & -4 - \lambda \end{vmatrix} = (\lambda - 1)^2 (2 - \lambda) = 0$$

Cơ hai trị riêng $\lambda_1 = 1$ (bội 2) và $\lambda_2 = 2$. Vectơ riêng :

$$\lambda_1 = 1$$
 $v_1 = (4/3, 2, 1)$
 $\lambda_2 = 2$ $v_2 = (3/4, 3/4, 1)$

Vậy ma trận A không chéo hóa được vì không có đủ 3 vecto riêng độc lập tuyến tính.

2)

$$A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$

www.VNMATH.com

19.0

Tri riêng : $\begin{vmatrix} -1 - \lambda & 4 & -2 \\ -3 & 4 - \lambda & 0 \\ -3 & 1 & 3 - \lambda \end{vmatrix} = (\lambda - 1) (\lambda - 2) (\lambda - 3) = 0$ Có ba trị riêng khác nhau $\lambda_1 = 1, \quad \lambda_2 = 2, \quad \lambda_{1'} = 3$ Vecto riêng : $\lambda_1 = 1$ $v_1 = (1, 1, 1)$ $\lambda_2 = 2$ $v_2 = (2, 3, 3)$ $\lambda_3 = 3$ $v_3 = (1, 3, 4)$ Vậy A chéo hóa được và ma trận P làm chéo hóa A là $P = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 4 \end{vmatrix}$ đồng thời $P^{-1}AP = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$ $A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix}$ 3) Tri riêng : $\begin{vmatrix} 5-\lambda & 0 & 0 \\ 1 & 5-\lambda & 0 \\ 0 & 1 & 5-\lambda \end{vmatrix} = (5-\lambda)^3 = 0$ Có một trị riêng bội ba $\lambda = 5$. Vecto riêng : $\lambda = 3$ chỉ có một vecto riêng độc lập tuyến tính là (0, 0, 1)Vậy ma trận A không có đủ ba vecto riêng độc lập tuyến

tinh nên không chéo hóa được.

$$A) A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

Tri riêng :

$$\begin{vmatrix} -\lambda & 0 & 0 \\ 0 & -\lambda & 0 \\ 3 & 0 & 1 - \lambda \end{vmatrix} = \lambda^2 (1 - \lambda) = 0.$$

Có hai trị riêng $\lambda_1 = 0$ bội 2 và $\lambda_2 = 1$ Vecto riêng :

$$\lambda_1 = 0$$
 $v_1 = (-1/3, 0, 1), v_2 = (0, 1, 0);$
 $\lambda_2 = 1$ $v_3 = (0, 0, 1).$

Ba vecto $\{v_1, v_2, v_3\}$ độc lập tuyến tính vì có định thức

$$\begin{vmatrix} -1/3 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = -1/3 \neq 0.$$

Vậy ma trận A có đủ ba vecto riêng độc lập tuyến tính, nên nó chéo hóa được và ma trận P làm chéo hóa A là

$$\mathsf{P} = \begin{bmatrix} -1/3 & 0 & 0\\ 0 & 1 & 0\\ 1 & 0 & 1 \end{bmatrix}$$

đồng thời 👘

$$P^{-1} AP = \begin{bmatrix} 0 & \\ & 0 \\ & & 1 \end{bmatrix}.$$

5)

$$A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

www.VNMATH.com

Tri riêng :

$$\begin{vmatrix} -2-\lambda & 0 & 0 & 0\\ 0 & -2-\lambda & 0 & 0\\ 0 & 0 & 3-\lambda & 0\\ \cdot & 0 & 0 & 0 & 3-\lambda \end{vmatrix} = (2 + \lambda)^2 (3 - \lambda)^2 = 0$$

Có hai trị riêng $\lambda_1 = -2$ (bội 2), $\lambda_2 = 3$ (bội 2). Vecto riêng :

$$\lambda_1 = -2 \qquad v_1 = (1, 0, 0, 0), \qquad v_2 = (0, 1, 0, 0) \lambda_2 = 3 \qquad v_3 = (0, 0, 0, 1)$$

Ma trận A không có đủ 4 vecto riêng độc lập tuyến tính, nên nó không chéo hóa được

6)
$$A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 5 & -5 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Tri riêng :

$$\begin{vmatrix} -2-\lambda & 0 & 0 & 0 \\ 0 & -2-\lambda & 5 & -5 \\ 0 & 0 & 3-\lambda & 0 \\ 0 & 0 & 0 & 3-\lambda \end{vmatrix} = (2 + \lambda)^2 (3 - \lambda)^2 = 0$$

Có hai trì riêng : $\lambda_1 = -2$ (bội 2) và $\lambda_2 = 3$ (bội 2). Vecto riêng :

$$\lambda_1 = -2 \qquad v_1 = (1, 0, 0, 0), \qquad v_2 = (0, 1, 0, 0) \\ \lambda = 3 \qquad v_3 = (0, 1, 1, 0), \qquad v_4 = (0, -1, 0, 1)$$

Bốn vecto v_1, v_2, v_3, v_4 độc lập tuyến tính vì

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Vậy ma trận A có đủ 4 vecto riêng độc lập tuyến tính nên nó chéo hóa được và ma trận P làm chéo hóa A là

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Đồng thời

$$P^{-1} AP = \begin{bmatrix} -2 & & \\ & -2 & & \\ & & 3 & \\ & & & 3 \end{bmatrix}$$

7.7. Ma trận của ánh xạ tuyến tính T cho trong đầu bài đối với cơ sở chính tắc B của \mathbf{R}^2 là

$$A = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$$

Trị riêng :

$$\begin{vmatrix} 3-\lambda & 4\\ 2 & 1-\lambda \end{vmatrix} = \lambda^2 - 4\lambda - 5 = 0$$

Có 2 trị riêng khác nhau

$$\lambda_1 = 5, \qquad \lambda_2 = -1.$$

Vecto riêng :

$$\lambda_1 = 5$$
 $v_1 = (2, 1)$
 $\lambda_2 = -1$ $v_2 = (1, -1)$

Hai vecto v_1 và v_2 độc lập tuyến tính (ban đọc tự kiểm tra). Do đó nếu đặt

$$P = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$

thì $P^{-1} AP$ là ma trận chéo.

Bây giờ tả xét cơ sở mới $B'=\{v_1, v_2\}.$ Ma trận chuyển cơ sở từ B sang B' là

 $[[v_1]_{p_1}, [v_2]_{p_2}]$ trùng với *P.* 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

www.VNMATH.com

Ma trận tủa ánh xạ T đối với cơ sở mới B' là $A' = P^{-1}AP$. Theo 7.3, 7 hcc/1 thì $P^{-1}AP$ là ma trận chéo. Vậy B' chính là cơ sở mới trong đó ma trận của ánh xạ T có dạng chéo. Lúc đó ta nói Γ có dạng chéo.

7.8. Ma trận của ánh xạ tuyến tính T cho trong đầu bài đối với cơ sở chính tắc B của \mathbb{R}^3 là

$$A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{bmatrix}$$

Trį riêng :

$$\begin{vmatrix} 2-\lambda & -1 & -1 \\ 1 & -\lambda & -1 \\ -1 & 1 & 2-\lambda \end{vmatrix} = (2-\lambda)(\lambda-1)^2$$

Có hai trị riêng $\lambda_1 = 2, \lambda_2 = 1$. Vecto riêng :

$$\begin{aligned} \lambda_1 &= 2 & v_1 &= (1, 1, -1) \\ \lambda_2 &= 1 & v_2 &= (1, 0, 1), \\ \end{aligned}$$

Ba vecto v_1 , v_2 và v_3 độc lập tuyến tính (bạn đọc tự kiểm tra). Do đó với

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

thì P^{-1} AP là ma trận chéo.

Xét cơ sở mới $B' = \{v_1, v_2, v_3\}$ Ma trận chuyển cơ sở từ B sang B' là

$$[[v_1]_B, [v_2]_B, [v_3]_B]$$

trùng với P. Ma trận của toán từ T đối với cơ sở mới B' là $A' = P^{-1}AP$. Theo 7.3 Thcc/1 thì $P^{-1}AP$ là ma trận chéo. Vậy B' chính là cơ sở mới trong đó ma trận của toán từ T có dạng chéo.

7.9. Cho $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Muốn tính A^{10} , trước hết ta đưa A về dạng chéo. Trị riêng của A :

$$\begin{vmatrix} 1-\lambda & 0\\ -1 & 2-\lambda \end{vmatrix} = (1-\lambda)(2-\lambda) = 0$$

Có hai trị riêng. $\lambda_1 = 1, \lambda_2 = 2$ Vecto riêng :

$$\lambda_1 = 1$$
 $v_1 = (1, 1);$
 $\lambda_2 = 2$ $v_2 = (0, 1).$

Hai vecto v_1 , v_2 độc lập tuyến tính (bạn đọc tự kiểm tra). Do đó với

$$P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
$$P^{-1} AP = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = D$$

2

ta có

Ta suy ra

$$A = PDP^{-1}.$$

Dễ thấy

 $A^m = PD^mP^{-1}$, *m* nguyên dương

Thật vậy, công thức này đã đúng với m = 1. Giả sử nó đã đúng với m ta chứng minh nó còn đúng với m + 1:

$$A^{m+1} = A^m A = (PD^mP^{-1})(PDP^{-1})$$

= $PD^m (P^{-1}P)DP^{-1} = PD^{m+1}P^{-1}$

$$A^{10} = PD^{10}P^{-1}$$

г

Vì

$$P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \text{ nen } P^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30 19 ICT 2012
360

۲.

Vì

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \text{ nen } D^{10} = \begin{bmatrix} 1^{10} & 0 \\ 0 & 2^{10} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2^{10} \end{bmatrix}$$

Do đó

$$A^{10} = PD^{10}P^{-1} = \begin{bmatrix} 1 & 0 \\ 1 - 2^{10} & 2^{10} \end{bmatrix}$$
$$A^{10} = \begin{bmatrix} 1 & 0 \\ -1023 & 1024 \end{bmatrix}.$$

7.10. Cho

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Ta tìm các trị riêng của A :

$$\begin{vmatrix} a-\lambda & d \\ c & d-\lambda \end{vmatrix} = \lambda^2 - (a+d)\lambda + ad - bc = 0$$

Biệt số của phương trình bậc hai này là

$$\Delta = (a + d)^2 - 4(ad - bc)$$

= $(a - d)^2 + 4bc$.

Vậy :

(a) Nếu $(a - d)^2 + 4bc > 0$ thì ma trận A có hai trị riêng thực khác nhau nên nó chéo hóa được.

(b) Nếu $(a - d)^2 + 4bc < 0$ thì ma trận A không có trị riêng thực nên nó không chéo hóa được trong trường số thực. Nhưng nếu xét trong trường số phúc C thì A có hai trị riêng phúc khác nhau, nên A chéo hóa được trong C.

7.11. Các ma trận trong các câu hỏi 1) – 8) là các ma trận đối xứng nên theo 7.4, Thực/1 thì chúng chéo hóa trực giao được. Ma trận P làm chéo hóa trực giao mỗi ma trận đối xứng A là ma trận có các cột là các vecto riêng của A đã trực giao hóa và chuẩn hóa.

1)
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Tri riêng :

$$\begin{vmatrix} 3-\lambda & 1\\ 1 & 3-\lambda \end{vmatrix} = (3-\lambda)^2 - 1 = 0$$

Có hai trị riêng $\lambda_1 = 4$, $\lambda_2 = 2$. Vecto riêng :

$$\begin{aligned} \lambda_1 &= 4 & w_1 &= (1, 1) ; \\ \lambda_2 &= 2 & w_2 &= (-1, 1). \end{aligned}$$

Vecto riêng đã trực chuẩn hóa là

$$\begin{aligned} \lambda_1 &= 4 \qquad v_1 = \frac{w_1}{||w_1||} = (1/\sqrt{2}, 1/\sqrt{2}); \\ \lambda_2 &= 2 \qquad v_2 = \frac{w_2}{||w_2||} = (-1/\sqrt{2}, 1/\sqrt{2}) \end{aligned}$$

Vậy

$$P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

là ma trận làm chéo hóa trực giao ma trận A và

$$P^{-1} AP = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$

$$P^{-1} AP = \begin{bmatrix} 5 & 3\sqrt{3} \\ 3\sqrt{3} & -1 \end{bmatrix}$$

Tri riêng :

$$\begin{vmatrix} 5-\lambda & 3\sqrt{3} \\ 3\sqrt{3} & -1-\lambda \end{vmatrix} = \lambda^2 - 4\lambda - 32 = 0.$$

A có hai trị riêng $\lambda_1 = 8$, $\lambda_2 = -4$.

Vecto riêng đã trực chuẩn hóa là

$$\begin{array}{rl} \lambda_1=8 & v_1=(\sqrt{3}/2\,,\,1/2)\ ;\\ \lambda_2=-4 & v_2=(-1/2\,,\sqrt{3}/2).\\ 127.0.0.1\ \text{downloaded}\ 60383.\text{pdf}\ \text{at}\ \text{Tue}\ \text{Jul}\ 31\ 08:30:19\ \text{ICT}\ 2012\\ 362 \end{array}$$

www.VNMATH.com

Vậy

$$P = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$$

là ma trận làm chéo hóa trực giao ma trận A, và

$$P^{-1}AP = \begin{bmatrix} 8 & 0 \\ 0 & -4 \end{bmatrix}$$

$$A = \begin{bmatrix} -7 & 24 \\ 24 & 7 \end{bmatrix}$$

Tri riêng :

$$\begin{vmatrix} -7-\lambda & 24\\ 24 & 7-\lambda \end{vmatrix} = \lambda^2 - 25^2 = 0$$

cơ hai trị riêng $\lambda_1 = 25$, $\lambda_2 = -25$.

Vecto riệng đã trực chuẩn hóa là

$$\begin{aligned} \lambda_1 &= 25 & v_1 &= (3/5, 4/5) \\ \lambda_2 &= -25 & v_2 &= (-4/5, 3/5). \end{aligned}$$

Vay

$$P = \begin{bmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{bmatrix}$$

là ma trận làm chéo hóa trực giao A và

$$P^{-1} AP = \begin{bmatrix} 25 & 0 \\ 0 & -25 \end{bmatrix}.$$

$$A = \begin{bmatrix} -2 & 0 & -36 \\ 0 & -3 & 0 \\ -36 & 0 & -23 \end{bmatrix}$$

Trį riêng :

$$\begin{vmatrix} -2 - \lambda & 0 & -36 \\ 0 & -3 - \lambda & 0 \\ -36 & 0 & -23 - \lambda \end{vmatrix} = -(3 + \lambda)(\lambda^2 + 25\lambda - 1250) = 0.$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Có ba trị riêng

 $\lambda_1 = 25, \quad \lambda_2 = -3, \quad \lambda_3 = -50.$

Vecto riêng đã trực chuẩn hóa là :

$$\begin{split} \lambda_1 &= 25 & v_1 &= (-4/5, \ 0, \ 3/5) \ ; \\ \lambda_2 &= -3 & v_2 &= (0, \ 1, \ 0) \ ; \\ \lambda_3 &= -50 & v_3 &= (3/5, \ 0, \ 4/5). \end{split}$$

Vậy

$$P = \begin{bmatrix} -4/5 & 0 & 3/5 \\ 0 & 1 & 0 \\ 3/5 & 0 & 4/5 \end{bmatrix}$$

là ma trận làm chéo hóa trực giao A và

$$P^{-1}AP = \begin{bmatrix} 25 \\ -3 \\ -50 \end{bmatrix}.$$

5)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Trị riêng :

$$\begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & 1 - \lambda & 0 \\ 0 & 0 & -\lambda \end{vmatrix} = \lambda^2 (2 - \lambda) = 0$$

Vecto riêng đã trực chuẩn hóa là

$$\begin{split} \lambda_1 &= 2 & v_1 = (1/\sqrt{2}, 1/\sqrt{2}, 0) ; \\ \lambda_2 &= 0 & v_2 = (1/\sqrt{2}, -1/\sqrt{2}, 0) ; \\ \lambda_3 &= 0 & v_3 = (0, 0, 1). \end{split}$$

Thật vậy hai vect
ơ v_2 , v_3 ứng cùng trị riêng 0 đã trực giao vì

 $\langle v_2, v_3 \rangle = \frac{1}{\sqrt{2}} \cdot 0 + \left(-\frac{1}{\sqrt{2}}\right) \cdot 0 + 0 \cdot 1 = 0.$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 364

www.VNMATH.com

Vậy ma trận

$$P = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

là ma trận làm chéo hóa trực giao ma trận A

$$P^{-1} AP = \begin{bmatrix} 2 & & \\ & 0 & \\ & & 0 \end{bmatrix}$$

6)
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

Trị riêng :

$$\begin{vmatrix} 2-\lambda & -1 & -1 \\ -1 & 2-\lambda & -1 \\ -1 & -1 & 2-\lambda \end{vmatrix} = -\lambda(\lambda - 3)^2$$

có các trị riêng $\lambda_1^{}~=~0,~\lambda_2^{}~=~\lambda_3^{}~=~3$; các vecto riêng là

$$\begin{array}{ll} \lambda_1 = 0 & w_1 = (1, \, 1, \, 1) ; \\ \lambda_2 = 3 & w_2 \, (1, \, -1, \, 0) ; \\ \lambda_3 = 3 & w_3 = (1, \, 0, \, -1). \end{array}$$

Hai vecto w_2 và w_3 chưa trực giao vì

$$\langle w_2, w_3 \rangle = 1.1 + (-1).0 + 0.(-1) = 1.$$

Ta trực giao hóa hai vectơ đó bằng cách giữ \mathbf{w}_3 và tìm t để

$$w = w_2 + tw_3$$

trực giao với w_3 , tức là

$$\langle w, w_3 \rangle = \langle w_2 + tw_3, w_3 \rangle = 0$$

= $\langle w_2, w_3 \rangle + t \langle w_3, w_3 \rangle = 0$
= $1 + 2t = 0 \Rightarrow t = -\frac{1}{2}$.

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Ta thu được

$$w = w_2 - \frac{1}{2}w_3 = (1, -1, 0) - \frac{1}{2}(1, 0, -1)$$
$$= \left(\frac{1}{2}, -1, \frac{1}{2}\right)$$

trực giao với w₃.

Bây giờ ta đặt

$$\begin{split} v_1 &= \frac{w_1}{||w_1||} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right);\\ v_2 &= \frac{w_2}{||w_2||} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)\\ v_3 &= \frac{w_3}{||w_3||} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right). \end{split}$$

Đó là ba vecto riêng đã trực chuẩn hóa tương ứng với các trị riêng $\lambda_1,~\lambda_2,~\lambda_3.$

Vậy

7)

$$P = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

là ma trận làm chéo hóa trực giao ma trận A và

Tri riêng : $\begin{vmatrix} 0 & \lambda & 1 & 0 & 0 \\ 1 & 3 - \lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & 0 & -\lambda \end{vmatrix} = \lambda^2 [(3 - \lambda)^2 - 1] = 0$ có các trị riêng $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = 4$, $\lambda_4 = 2$. Các vecto riêng đã trực chuẩn hóa là : $\lambda_1 = \lambda_2 = 0$ $v_1 = (0, 0, 1, 0);$ $v_2 = (0, 0, 0, 1)$; $\lambda_3 = 4$ $v_3 = (1/\sqrt{2}, 1/\sqrt{2}, 0, 0)$; $\lambda_4 = 2$ $v_A = (1/\sqrt{2}, -1/\sqrt{2}, 0, 0).$ Vậy $P = \begin{bmatrix} 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ là ma trận làm chéo hóa trực giao ma trận A và $P^{-1}AP = \begin{bmatrix} 0 & & \\ & 0 & \\ & & 4 & \\ & & & 0 \end{bmatrix}$ $A = \begin{vmatrix} 5 & -2 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & 0 & 0 \end{vmatrix}$ 8) Tri riêng : $\begin{vmatrix} 5-\lambda & -2 & 0 & 0 \\ -2 & 2-\lambda & 0 & 0 \\ 0 & 0 & 5-\lambda & -2 \\ 0 & 0 & -2 & 2-1 \end{vmatrix} = (\lambda^2 - 7\lambda + 6)^2 = 0.$

Có các trị riêng

$$\lambda_1 = \lambda_2 = 1, \quad \lambda_3 = \lambda_4 = 6.$$

Các vecto riêng đã trực chuẩn hóa là

$$\begin{split} \lambda_1 &= \lambda_2 = 1 \quad v_1 = (1\sqrt{5}, 2\sqrt{5}, 0, 0); \\ v_2 &= (0, 0, 1\sqrt{5}, 2\sqrt{5}); \\ \lambda_3 &= \lambda_4 = 6 \quad v_3 = (-2\sqrt{5}, 1\sqrt{5}, 0, 0); \\ v_4 &= (0, 0, -2\sqrt{5}, 1\sqrt{5}). \end{split}$$

Thật vậy, hai vectơ riêng v_1 , v_2 ứng cùng trị riêng $\lambda = 1$ đã trực giao vì

$$\langle v_1, v_2 \rangle = \frac{1}{\sqrt{5}} \cdot 0 + \frac{2}{\sqrt{5}} \cdot 0 + 0 \cdot \frac{1}{\sqrt{5}} + 0 \cdot \frac{2}{\sqrt{5}} = 0$$

Hai vecto riêng v_3 , v_4 ứng cùng trị riêng $\lambda = 6$ cũng đã trực giao vì

$$\langle v_3, v_4 \rangle = -\frac{2}{\sqrt{5}} \cdot 0 + \frac{1}{\sqrt{5}} \cdot 0 + 0 \cdot (-\frac{2}{\sqrt{5}}) + 0 \cdot \frac{1}{\sqrt{5}} = 0.$$

Vậy

$$P = \begin{bmatrix} 1\sqrt{5} & 0 & -2\sqrt{5} & 0\\ 2\sqrt{5} & 0 & 1\sqrt{5} & 0\\ 0 & 1\sqrt{5} & 0 & -2\sqrt{5}\\ 0 & 1\sqrt{5} & 0 & 1\sqrt{5} \end{bmatrix}$$

là ma trận làm chéo hóa trực giao ma trận A và

$$P^{-1} AP = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 6 & \\ & & & 6 \end{bmatrix}$$

7.12. Cho

$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}; b \neq 0$$

200. 81 81 81

Phương trình đặc trưng của A

$$\begin{vmatrix} a-\lambda & b\\ b & a-\lambda \end{vmatrix} = (a - \lambda)^2 - b^2 = 0.$$

A có trị riêng

$$\lambda_1 = a + b, \lambda_2 = a - b.$$

Các vecto riêng đã trực chuẩn hóa là

$$\lambda_1 = a + b \qquad v_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
$$\lambda_2 = a - b \qquad v_2 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

Vậy

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & +\frac{1}{\sqrt{2}} \end{bmatrix}$$

là ma trận làm chéo hóa trực giao A :

$$P^{-1} AP = \begin{bmatrix} a+b & 0\\ 0 & a-b \end{bmatrix}$$

7.13. Nhận xét mở đầu

Xét phương trình bậc hai tổng quát đối với x, y :

 $ax^2 + 2bxy + cy^2 + dx + ey = f$ (7.1)

Để nhận dạng đường cong biểu diễn bởi phương này ta tìm cách đổi biến để đưa phương trình về dạng đơn giản hơn. Cách làm xem ở Thcc/1, 7.3.

Trước hết ta nhận định rằng vẽ trái của (7.1) gồm hai bộ phận : bộ phận bậc hai

$$Q(x, y) = ax^2 + 2bxy + cy^2$$

là một dạng toàn phương xác định bởi ma trận đối xứng

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
(7.2)

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 24A-BT.TCC.T1 369 và bộ phận tuyến tính dx + ey xác định bởi ma trận

$$K = [d \ e]. \tag{7.3}$$

Phương trình (7.1) có dạng ma trận

$$\begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} + K \begin{bmatrix} x \\ y \end{bmatrix} = f$$
(7.4)

Sau đó ta làm như ở Thee/1, 7.3.

1) Tìm các trị riêng λ_1 và λ_2 và các vectơ riêng trực chuẩn tương ứng v_1 và v_2 của ma trận A. Vì A đối xứng nên nếu $\lambda_1 \neq \lambda_2$ thì đương nhiên v_1 trực giao với v_2 , còn nếu $\lambda_1 = \lambda_2$ thì ứng với nó sẽ có hai vectơ riêng độc lập tuyến tính u_1 và u_2 , bằng biện pháp trực chuẩn hóa Gram-Smidt chẳng hạn, ta sẽ được hai vectơ riêng trực chuẩn v_1 , v_2 ứng $\lambda_1 = \lambda_2$.

2) Đặt $B = \{v_1, v_2\}$ và lấy B làm cơ sở mới của \mathbf{R}^2 . Ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới B và công thức đổi biến là

$$P = [[v_1] \ [v_2]], \quad [u] = P[u]_{\rm B}$$
(7.5)

3) Kí hiệu tọa độ trong cơ sở mới B là (x', y') thỉ phương trình (7.1) trở thành

$$\begin{bmatrix} x' & y' \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} + KP \begin{bmatrix} x' \\ y' \end{bmatrix} = f$$
(7.6)

hay

$$\lambda_1 x'^2 + \lambda_2 y'^2 + d'x' + e'y' = f, [d', e'] = KP.$$

4) Ta viết lại phương trình này ở dạng

$$\lambda_1 \left(x' - \frac{d'}{2\lambda_1} \right)^2 + \lambda_2 \left(y' - \frac{e'}{2\lambda_2} \right)^2 = f + \frac{d'^2}{4\lambda_1} + \frac{e'^2}{4\lambda_2}$$
(7.7)

Đặt

$$x' - \frac{d'}{2\lambda_1} = X, y' - \frac{e'}{2\lambda_2} = Y,$$
 (7.8)

$$f + \frac{d^{\prime 2}}{4\lambda_1} + \frac{e^{\prime 2}}{4\lambda_2} = F \tag{7.9}$$

Phương trình (7.7) viết

$$\lambda_1 X^2 + \lambda_2 Y^2 = \mathbf{F} \tag{7.10}$$

Tùy theo dấu của λ_{1P} , λ_2 và F ta sẽ suy từ (7.10) ra dạng của đường bậc hai (7.1). Nếu muốn, dựa vào các công thức đổi biến (7.5) và (7.8) ta có thể vẽ được đường cong (7.10).

Chú ý: Nếu trong phương trình (7.1) không có bộ phận bậc nhất tức là d = 0, e = 0, thì ma trận Kở (7.3) là ma trận không nên ma trận KP ở (7.6) cũng là ma trận không và do đó phương trình (7.7) sẽ đơn giản là

$$\lambda_1 x^{\prime 2} + \lambda_2 y^{\prime 2} = f \tag{7.11}$$

có dạng trùng với (7.10), vậy không cần phép đổi biến (7.8) nữa. Bây giờ ta áp dung nhân xét trên.

Day gio ta ap açang miçin xe.

a) Xét phương trình

$$2x^2 - 4xy - y^2 + 8 = 0.$$

Ta suy ra ma trận của bộ phận toàn phương là

$$A = \begin{bmatrix} 2 & -2 \\ -2 & -1 \end{bmatrix}$$

Nó đối xứng và có phương trình đặc trưng

$$\begin{vmatrix} 2-\lambda & -2\\ -2 & -1-\lambda \end{vmatrix} = \lambda^2 - \lambda - 6 = 0.$$

Do đó A có hai trị riêng $\lambda_1 = -2$, $\lambda_2 = 3$ là hai trị riêng khác nhau với hai vecto riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{5}} (1, 2), \quad v_2 = \frac{1}{\sqrt{5}} (-2, +1)$$

Lấy $B = \{v_1, v_2\}$ làm cơ sở mới và kí hiệu tọa độ trong cơ sở mới là (x', y'), thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới B là

$$P = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2\\ 2 & +1 \end{bmatrix}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

24B-BT.TCC.T1

 $-2(x')^2 + 3(y')^2 + 8 = 0,$

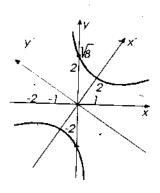
tức là

$$2(x')^2 - 3(y')^2 = 8$$

hay

$(\underline{x'})^2$	$(y')^2$	_	
2 ²	$(\sqrt{8/3})^2$	~	T

Đó là một đương hypebol có bán trục thực là 2 nằm trên Ox', bán trục ảo là $\sqrt{8/3}$ nằm trên Oy'. Muốn vẽ nó, trước hết ta dựng các vecto v_1 , v_2 , từ đó suy ra hệ trục mới Ox'y', rồi vẽ đường cong dựa vào phương trình của nó trong hệ trục mới (hình 4).



Hình 4

b) Cho phương trình

Ta suy ra

 $x^2 + 2xy + y^2 + 8x + y = 0$

 $A = \begin{bmatrix} 1 & 1 \\ 127.0.0.1 \text{ downloaded } 60383.pdf at Tue Jul 31 98:30:19 ICT 2012 372$

A đối xứng và có phương trình đặc trưng

$$\begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 - 1$$

 $(= \lambda (\lambda - 2) = 0$.

Do đó A có hai trị riêng

$$\lambda_1 \simeq 2, \quad \lambda_2 = 0,$$

với hai vecto riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{2}} (1, +1), \quad v_2 = \frac{1}{\sqrt{2}} (-1, +1)$$

Lấy $B' = \{v_1, v_2\}$ làm cơ sở mới và kí hiệu tọa độ trong cơ sở mới là (x', y') thì ma trận chuyển cơ sở sang cơ sở mới là

$$P = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & +1 \end{bmatrix}$$

và phương trình đã cho trở thành

$$\lambda_1 (x')^2 + \lambda_2 (y')^2 + [8 \ 1] P \begin{bmatrix} x' \\ y' \end{bmatrix} = 0$$

tức là

$$2x^{\prime 2} + \frac{1}{\sqrt{2}} (9x^{\prime} - 7y^{\prime}) = 0$$

hay

$$y' = -\frac{1}{7}(2\sqrt{2}(x')^2 + 9x') = +\frac{2\sqrt{2}}{7}x'^2 + \frac{9}{7}x'$$

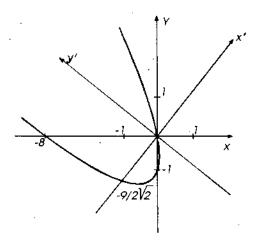
Dó là một đường parabol có trục song song với Oy' (hình 5).c) Cho phương trình

$$5x^2 + 4xy + 5y^2 = 9$$

Ta suy ra

$$A = \begin{bmatrix} 5 & 2\\ 2 & 5 \end{bmatrix}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012



A đối xứng và có phương trình đặc trưng

$$\begin{vmatrix} 5-\lambda & 2\\ 2 & 5-\lambda \end{vmatrix} = (5-\lambda)^2 - 4 = 0.$$

Do đó A có hai trị riêng $\lambda_1=7,\,\lambda_2=3$ với hai vectơ riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{2}} (1, 1), \quad v_2 = \frac{1}{\sqrt{2}} (-1, +1)$$

Lấy $B = \{v_1, v_2\}$ làm cơ sở mới và kí hiệu tọa độ mới là (x', y') thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới B là

$$P = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & +1 \end{bmatrix}$$

và phương trình đã cho trở thành

 $7x'^2 + 3y'^2 = 9$,

hay

$$\frac{(x')^2}{(3/\sqrt{7})^2} + \frac{(y')^2}{(\sqrt{3})^2} = 1$$

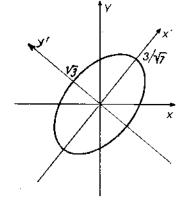
Đó là một đường elíp có bán trục nhỏ trên Ox'bằng $3/\sqrt{7}$ và bán trục lớn trên Oy bằng $\sqrt{3}$ (hình 6),

d) Cho phương trình

$$11x^2 + 24xy + 4y^2 = 24$$

Ta suy ra

$$A = \begin{bmatrix} 11 & 12\\ 12 & 4 \end{bmatrix}$$



Hình 6

A đối xứng và có phương trình đặc trưng

$$\begin{vmatrix} 11 - \lambda & 12 \\ 12 & 4 - \lambda \end{vmatrix} = \lambda^2 - 15\lambda - 100 = 0 .$$

Do đó A có hai trị riêng

$$\lambda_1 = 20, \quad \lambda_2 = -5,$$

với hai vecto riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{5}} (4, 3), v_2 = \frac{1}{\sqrt{5}} (3, -4).$$

Lấy $B = \{v_1, v_2\}$ làm cơ sở mới và kí hiệu tọa độ mới là (x', y') thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới B là

$$P = \frac{1}{\sqrt{5}} \begin{bmatrix} 4 & 3\\ 3 & -4 \end{bmatrix}$$

và phương trình đã cho trở thành

$$20x^{\prime 2} - 5y^{\prime 2} = 15$$

tức là

$$4x'^2 - y'^2 = 3$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

hay

$$\frac{x^{\prime 2}}{(\sqrt{3}/2)^2} - \frac{y^{\prime 2}}{(\sqrt{3})^2} = 1$$

Đó là một hypebol có bản trục thực bằng $\sqrt{3}/2$ đặt trên trục Ox' và bản trục ảo bằng $\sqrt{3}$ đặt trên trục Oy'.

e) Cho phương trình

$$2x^2 + 4xy + 5y^2 = 24$$

Ta suy ra

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$$

A đối xứng và có phương trình đặc trưng

$$\begin{vmatrix} 2-\lambda & 2\\ 2 & 5-\lambda \end{vmatrix} = \lambda^2 - 7\lambda + 6 = 0$$

Do đó A có hai trị riêng

$$\lambda_1 = 1, \quad \lambda_2 = 6,$$

với hai vecto riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{5}} (2, -1), \quad v_2 = \frac{1}{\sqrt{5}} (1, 2)$$

Lấy $B = \{v_1, v_2\}$ làm cơ sở mới và kí hiệu tọa độ mới là (x', y') thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới B là

$$D = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1\\ -1 & 2 \end{bmatrix}$$

và phương trình đã cho trở thành

$$x'^2 + 6y'^2 = 24,$$

 $\frac{x^{\prime 2}}{(\sqrt{24})^2} + \frac{y^{\prime 2}}{2^2} = 1$

hay

Đó là một elíp có bán trục lớn bằng
$$\sqrt{24}$$
 đặt trên trục Ox' và bán trục nhỏ bằng 2 đặt trên trục Oy' .

f) Cho phương trình

 $x^2 + xy + y^2 = 18.$

Ta suy ra

$$\mathbf{A} = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix}$$

A đối xứng và có phương trình đặc trưng

$$\begin{vmatrix} 1-\lambda & 1/2 \\ 1/2 & 1-\lambda \end{vmatrix} = (1 - \lambda)^2 - \frac{1}{4} .$$

Do đó A có hai trị riêng

$$\lambda_1 = 1/2, \quad \lambda_2 = 3/2,$$

Và hai vecto riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{2}} (1, -1), \quad v_2 = \frac{1}{\sqrt{2}} (1, 1)$$

Lấy $B = \{v_1, v_2\}$ làm cơ sở mới và kí hiệu tọa độ mới là (x^{\prime}, y^{\prime}) thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới B là

$$D = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

và phương trình đã cho trở thành

$$\frac{1}{2}x^{2} + \frac{3}{2}y^{2} = 18,$$

hay

$$\frac{x^{\prime 2}}{6^2} + \frac{y^{\prime 2}}{(6/\sqrt{3})^2} = 1 \; .$$

Đó là một elip có bán trục lớn bằng 6 đặt trên trục Ox' và bán trục nhỏ bằng $6/\sqrt{3}$ đặt trên trục Oy'.

g) Cho phương trình

$$x^2 - 8xy + 7y^2 = 36.$$

Ta suy ra

$$A = \begin{bmatrix} 1 & -4 \\ -4 & 7 \end{bmatrix}$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

A đối xứng có phương trình đặc trưng

$$\begin{vmatrix} 1-\lambda & -4\\ -4 & 7-\lambda \end{vmatrix} = \lambda^2 - 8\lambda - 9 = 0.$$

Do đó A có hai trị riêng

$$\lambda_1 = 9, \qquad \lambda_2 = -1,$$

với hai vecto riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{5}} (1, -2), \quad v_2 = \frac{1}{\sqrt{5}} (2, 1)$$

Lấy $B = \{v_1, v_2\}$ làm cơ sở mới và kí hiệu tọa độ mới là (x', y') thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới là

$$P = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2\\ -2 & 1 \end{bmatrix},$$

và phương trình đã cho trở thành

$$9x^{2} - y^{2} = 36,$$

hay

$$\frac{x'^2}{2^2} - \frac{y'^2}{6^2} = 1$$

Đó là một hypebol có bán trục thực bằng 2 đặt trên trục Ox' va bán trục ảo bằng 6 đặt trên trục Oy'.

h) Cho phương trình

$$5x^2 - 4xy + 8y^2 = 86.$$

Ta suy ra

$$A = \begin{bmatrix} 5 & -2 \\ -2 & 8 \end{bmatrix}$$

A đối xứng và có phương trình đặc trưng

1

$$\begin{vmatrix} 5-\lambda & -2\\ -2 & 8-\lambda \end{vmatrix} = \lambda^2 - 13\lambda + 36 = 0$$

1

Do đó A có hai trị riêng

với hai vecto riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{5}} (2, -1), \quad v_2 = \frac{1}{\sqrt{5}} (1, 2)$$

Lấy $B = \{v_1, v_2\}$ làm cơ sở mới và kí hiệu tọa độ mới là (x', y') thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới B là

$$P = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1\\ -1 & 2 \end{bmatrix}$$

và phương trình đã chở trở thành

$$4x'^2 + 9y'^2 = 36$$

tức là

$$\frac{x'^2}{3^2} + \frac{y'^2}{2^2} = 1$$

Đó là một elip có bán trục lớn bằng 3 đặt trên trục Ox' và bán trục nhỏ bằng 2 đặt trên trục Oy'.

7.14. Cách làm giống như cách giải bài tập 7.13, chỉ khác ở chố ta làm việc trong \mathbf{R}^3 có 3 tọa độ, ma trận A của dạng toàn phương sẽ là ma trận cấp 3.

(a) Xét phương trình

$$2x_1^2 - 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 3x_3^2 = 16.$$

Vế trái là một dạng toàn phương trên ${f R}^3$ có ma trận

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

A đối xứng và có phương trình đặc trưng

$$\begin{vmatrix} 2-\lambda & 0 & -1 \\ 0 & 2-\lambda & -1 \\ -1 & -1 & 3-\lambda \end{vmatrix} = (2-\lambda)(\lambda^2 - 5\lambda + 4) = 0.$$

Do đó A có ba trị riêng khác nhau

 $\lambda_1 = 1, \quad \lambda_2 = 2, \quad \lambda_3 = 4,$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

9 9 G

với ba vecto riêng trực chuẩn

$$v_1 = \frac{1}{\sqrt{3}} (1, 1, 1), \quad v_2 = \frac{1}{\sqrt{2}} (1, -1, 0),$$

$$v_3 = \frac{1}{\sqrt{6}} (1, 1, -2).$$

Lấy $B = \{v_1, v_2, v_3\}$ làm cơ sở mới và kí hiệu tọa độ mới là (y_1, y_2, y_3) thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở mới B là

$$P = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{bmatrix}$$

và phương trình đã cho trở thành

$$y_1^2 + 2y_2^2 + 4y_3^2 = 16,$$

tức là

$$\frac{y_1^2}{4^2} + \frac{y_2^2}{(2\sqrt{2})^2} + \frac{y_3^2}{2^2} = 1$$

Đó là một mặt elipxôit có 3 bán trục là 4, $2\sqrt{2}$, 2, đặt lần lượt trên các trục Oy_1 , Oy_2 , Oy_3

Chú ý. Vì ở đây phương trình đã cho không chứa số hạng bậc nhất nên nếu chỉ nhận dạng mặt bậc hai, không cần hệ trục mới và công thức đổi biến thì chỉ cần tính các trị riêng của ma trận A là có thể viết được phương trình của mặt bậc hai trong tọa độ mới và từ đó mà nhận ra dạng của mặt bậc hai đã cho.

b) Xét phương trình

2xy + 2xz + 2yz - 6x - 6y - 4z = 0

Bộ phận toàn phương 2xy + 2xz + 2yz có ma trận

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Ma trận này đối xứng có phương trình đặc trưng

$$\begin{vmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -(\lambda + 1)^2 (\lambda - 2) = 0$$

Do đó A có một trị riêng bội hai $\lambda_1 = \lambda_2 = -1$ và một trị riêng đơn $\lambda_3 = 2$ với các vectơ riêng

 $w_1 = (-1, 1, 0)$ và $w_2 = (-1, 0, 1)$ ứng trị riêng -1; $w_3 = (1, 1, 1)$ ứng trị riêng 2.

Hai vecto w_1 và w_2 chưa trực giao vì

$$\langle w_1, w_2 \rangle = 1.1 + 0.(-1) + (-1).0 = 1 \neq 0.$$

Ta thay hai vecto đó bởi hai vecto trực chuẩn bằng cách áp dụng quá trình Gram-Smidt vào hai vecto $\{w_1, w_2\}$

Trước hết, vì
$$||w_1|| = \sqrt{(-1)^2 + 1^2 + 0^2} = \sqrt{2}$$
 nên ta đặt $v_1 = w_1 / ||w_1||$ để có $||v_1|| = 1$.

Sau đó ta đặt $w = w_2 + tv_1$ và xác định $t \in \mathbf{R}$ để w trực giao với v_1 . Ta có

$$\langle w, v_1 \rangle = \langle w_2 + tv_1, v_1 \rangle = \langle w_2, v_1 \rangle + t$$

Muốn cho w trực giao với v, ta phải có $\langle w, v_1 \rangle = 0$ tức là $t = -\langle w_2, v_1 \rangle = -\left[(-1) \cdot \left(-\frac{1}{\sqrt{2}}\right) + 0 \cdot \frac{1}{\sqrt{2}} + 1 \cdot 0\right] = -\frac{1}{\sqrt{2}}$.

Do đó

$$w = (-1, 0, 1) - \frac{1}{\sqrt{2}} \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1 \right) = \left(-\frac{1}{2}, -\frac{1}{2}, 1 \right)$$

Ta có

$$||w|| = \sqrt{\frac{1}{4} + \frac{1}{4} + 1} = \frac{\sqrt{6}}{2}$$

Ta đặt

$$v_2 = \frac{w}{||w||} = \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right),$$

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

thì được v_1 , v_2 là hai vecto trực giao và chuẩn hóa và là các vecto riêng ứng trị riêng bội hại $\lambda_1 = \lambda_2$, nghĩa là có

$$\begin{aligned} ||v_1|| &= 1, \ ||v_2|| &= 1, \ \langle v_1, v_2 \rangle = 0 \\ Av_1 &= \lambda_1 v_1, \ Av_2 &= \lambda_2 v_2, \ \lambda_1 &= \lambda_2. \end{aligned}$$

(bạn đọc có thể kiểm tra lại. Tuy nhiên việc kiểm tra ấy không cần thiết vì đó là những kết luận tự nhiên do cách làm của ta, xem Thec/1, chương 7, 7.3, 7.4 và 7.5),

Vecto riêng $w_3 = (1, 1, 1)$ ứng trị riêng $\lambda_3 = 2$ chuẩn hóa thành $v_3 = w_3/||w_3|| = (1/3, 1/\sqrt{3} \cdot 1/\sqrt{3})$. Vì ma trận A đối xứng nên $B' = \{v_1, v_2, v_3\}$ tạo thành một cơ sở trực chuẩn của \mathbb{R}^3 . Kí hiệu tọa độ trong cơ sở B' là (x', y', x') thì ma trận chuyển cơ sở từ cơ sờ cũ sang cơ sở B' là

$$P = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

và phương trình đã chỗ trở thành

$$-x^{2} - y^{2} + 2z^{2} + [-6 - 6 - 4] P \begin{bmatrix} x^{2} \\ y^{2} \\ z^{2} \end{bmatrix} = 0$$

hay

$$-x^{\prime 2} - y^{\prime 2} + 2z^{\prime 2} + \frac{4}{\sqrt{6}}y^{\prime} - \frac{16}{\sqrt{3}}z^{\prime} = 0$$

hay

$$-x^{\prime 2} - \left(y^{\prime} - \frac{2}{\sqrt{6}}\right)^{2} + 2\left(z^{\prime} - \frac{4}{\sqrt{3}}\right)^{2} = 10$$

Đạt

$$x' = X, y' = \frac{2}{\sqrt{6}} + Y, z' = \frac{4}{\sqrt{3}} + Z$$

ta được

$$-X^2 - Y^2 + 2Z^2 = 10$$

Đo là phương trình của một hypebôlôit 2 tầng trong hệ trục mới XYZ.

c) Xét phương trình

 $7x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz - 12x + 12y + 60z = 24$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 382

Ta suy ra
$$A = \begin{bmatrix} 7 & -1 & -2 \\ -1 & 7 & 2 \\ -2 & 2 & 10 \end{bmatrix}$$

A đối xứng và có phương trình đặc trưng

$$\begin{vmatrix} 7-\lambda & -1 & -2\\ -1 & 7-\lambda & 2\\ -2 & 2 & 10-\lambda \end{vmatrix} = -\lambda^3 + 24\lambda^2 - 180\lambda + 432 = \\ = -(\lambda - 6)^2 (\lambda - 12) = 0$$

A có các trị riêng $\lambda_1 = \lambda_2 = 6$ và $\lambda_3 = 12$.

Ứng trị riêng $\lambda_1 = \lambda_2 = 6$ có hai vectơ riêng độc lập tuyến tính $u_1 = (1, 1, 0), u_2 = (2, 0, 1).$

Hai vecto này chưa trực giao. Ấp dụng quá trình trực chuẩn hóa Gram-Smit ta được : $v_1 = \frac{1}{\sqrt{2}} (1, 1, 0), \quad v_2 = \frac{1}{\sqrt{3}} (1, -1, 1)$. Là hai vecto riêng ứng trị riêng $\lambda_1 = \lambda_2 = 6$ đã trực chuẩn.

Ứng trị riêng λ_3 = 12 có vecto riêng chuẩn hóa

$$v_3 = \frac{1}{\sqrt{6}} (-1, 1, 2)$$

Vì A đối xứng nên $B = \{v_1, v_2, v_3\}$ tạo thành một cơ sở trực chuẩn của \mathbf{R}^3 . Ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở B là

$$P = [[v_1] \ [v_2] \ [v_3]] = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{3} & -1/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{6} \\ 0 & 1/\sqrt{3} & 2/\sqrt{6} \end{bmatrix}$$

Ta có : $P^{-1} = P$.

Kí hiệu tọa độ trong cơ sở B là (x', y', z') thì phương trình đã cho trở thành

$$6x^{2} + 6y^{2} + 12z^{2} + [-12\ 12\ 6]\ P\begin{bmatrix}x^{2}\\y^{2}\\z^{2}\end{bmatrix} = 24$$

hay:
$$6x^{2} + 6y^{2} + 12z^{2} + \frac{36}{\sqrt{3}}y^{2} + \frac{144}{\sqrt{6}}z^{2} = 24$$

hay : $x'^2 + y'^2 + 2z'^2 + \frac{6}{\sqrt{3}}y' + \frac{24}{\sqrt{6}}z' = 4$ 127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

hay :
$$x'^2 + (y' + \frac{3}{\sqrt{3}})^2 + 2(z' + \frac{6}{\sqrt{6}})^2 = 19$$

Dật : $x' = X$, $y' = -\frac{3}{\sqrt{3}} + Y$, $z' = -\frac{6}{\sqrt{6}} + Z$
ta được : $X^2 + Y^2 + 2Z^2 = 21$.
Dó là phương trình của mặt elipxôit trong hệ trục mới XYZ.
d) Xét phương trình : $2xy - 6x + 10y + z - 31 = 0$.
Ta suy ra : $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,
A đối xứng và có phương trình đặc trưng
 $\begin{vmatrix} -\lambda & 1 & 0 \\ 1 & -\lambda & 0 \end{vmatrix} = -\lambda^3 + \lambda = 0$.

 $\begin{vmatrix} 0 & 0 & -\lambda \\ Do đó A cơ ba trị riêng khác nhau : <math>\ddot{\lambda}_1 = 1, \lambda_2 = -1, \lambda_3 = 0$ với ba vecto riêng trực chuẩn

 $v_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \quad v_2 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right), \quad v_3 = (0, 0, 1)$ Lấy $B' = \{v_1, v_2, v_3\}$ làm cơ sở mới và kí hiệu tọa độ mới là (x', y', z') thỉ ma trận chuyển cơ sở từ cơ sở cữ sang cơ sở mới B' là

$$P = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

và phương trình đã cho trở thành

$$\lambda_{1} x^{2} + \lambda_{2} y^{2} + \lambda_{3} z^{2} + [-6 \ 10 \ 1] P \begin{bmatrix} x \\ y' \\ z' \end{bmatrix} - 31 = 0$$
$$x^{2} - y^{2} + \frac{4}{\sqrt{2}} x^{2} - \frac{16}{\sqrt{2}} y^{2} + z^{2} - 31 = 0$$

۲...٦

hay :

Phương trình này có thể viết

$$(x' + \sqrt{2})^2 - 2 - (y' + 4\sqrt{2})^2 + 32 + z' - 31 = 0$$

Dat : x' + $\sqrt{2} = X$; y' + $4\sqrt{2} = Y$, z' - 1 = Z,

ta có : $X^2 - Y^2 + Z = 0$

www.VNMATH.com

Đó là phương trình của mặt parabôlôit hypebôlic trong hệ truc mới XYZ.

e) Xét phương trình

$$2x^{2} + 2y^{2} + 5z^{2} - 4xy - 2xz + 2yz + 10x - 26y - 2z = 0.$$

Ta suy ra $A = \begin{bmatrix} 2 & -2 & -1 \\ -2 & 2 & 1 \\ -1 & 1 & 5 \end{bmatrix}$

đối xứng và có phương trình đặc trung -

$$\begin{vmatrix} 2-\lambda & -2 & -1 \\ -2 & 2-\lambda & 1 \\ -1 & 1 & 5-\lambda \end{vmatrix} = -\lambda(\lambda^2 - 9\lambda + 18) = 0.$$

Ma trận A có ba trị riêng khác nhau : $\lambda_1 = 6$, $\lambda_2 = 3$, $\lambda_3 = 0$, với ba vectơ riêng trực chuẩn : $v_1 = \left(\frac{1}{\sqrt{-6}}, -\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)$;

$$v_2 = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right); \quad v_3 = (1\sqrt{2}, 1/\sqrt{2}, 0).$$

Lấy $B = \{v_1, v_2, v_3\}$ lam cơ sở mới và kí hiệu tọa độ mới là (x', y', z') thì ma trận chuyển cơ sở từ cơ sở cũ sang cơ sở B là

$$P = \begin{bmatrix} 1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ -1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \\ 2/\sqrt{6} & 1/\sqrt{3} & 0 \end{bmatrix}$$

và phương trình đã cho trở thành

 $\lambda_{1} x^{2} + \lambda_{2} y^{2} + \lambda_{3} z^{2} + [10 - 26 - 2] P \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = 0$ hay: $6x^{2} + 3y^{2} + \frac{40}{\sqrt{6}}x^{2} + \frac{34}{\sqrt{3}}y^{2} - \frac{16}{\sqrt{2}}z^{2} = 0$ $6\left(x + \frac{20}{6\sqrt{6}}\right)^2 + 3\left(y' + \frac{17}{3\sqrt{2}}\right)^2 - 8\sqrt{2}z' = 0$ hay : Dat: $x'' + \frac{20}{6\sqrt{6}} = X, y' + \frac{17}{3\sqrt{3}} = Y, z' = Z,$ $6X^2 + 3Y^2 - 8\sqrt{2}Z = 0.$ ta có :

Đó là phương trình của mặt parabôlôit eliptic trong hệ trục mới XYZ. 127.0.0.1 downloaded 60383-pdf at Tue Jul 31 08:30:19 ICT 2012

MUC LUC

Thay lời nói đầu Chương 4 Tân trập khi áng kư	5 5
Character I with the transmission of the second sec	5
Chuong I. TÀP HỌP VÀ ẢNH XẠ	
A. Để bài	
1.0. Mở đầu	5
1.1. Tập hợp và phần tử	6
1.2. Các phép toán về tập hợp	7
1.3. Tính Để Các	7
1.4. Quan hệ tương đương và quan hệ thứ tự	8
L5. Ánh xa	11
B. Bài giải và Hướng dẫn	11
Chuang II. CẦU TRÚC ĐẠI SỐ – SỐ PHỨC – ĐA THỨC	
VÀ PHÂN THỨC HỮU TÌ	35
A. Dế bài	35
2.1. Luật hợp thành trong trên một tập	35
2.2. Cấu trúc nhóm	35
2.3. Cấu trúc vành	36
2.4. Cấu trúc trường	36
2.5. Số phức	37
2.6. Da thức	39
2.7. Phân thức hữu tỉ	40
B. Bài giải và Hướng dẫn	40
Chuong HL DINH THÚC - MA TRÀN -	
HÛ PHƯƠNG TRÌNH TUYẾN TÍNH	80
A. Dề bài	80
3.1. Ma trận	80
3.2. Định thức	80
3.3. Phép nhân mà trận với mà trận – Mà trận nghịch đảo	83
3.4. Hệ phương trình tuyến tính	87
3.5. Hạng của mà trận - Hệ phương trình tuyến tính tổng quát	89
B. Bài giải và Hướng dẫn	91

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 386

8 0 0 0 1 1 0 0 1

....

www.VNMATH.com

Chương IV. ĐẠI SỐ VECTƠ VÀ HÌNH HỌC GIẢI TÍCH (ÔN TẬP VÀ BỔ SUNG) Bạn dọc tự giải.

4

Chuang V. KHÔNG GIAN VECTO - KHÔNG GIAN EUCLID	146
A. Để bài	146
5.1. Không gian vecto - Đình nghĩa và thí dụ	146
5.2. Không gian con và hệ sinh	. 147
5.3. Họ vecto độc lập tuyến tính và phụ thuộc tuyến tính	149
5.4. Không gian hữu hạn chiếu và cơ sở của nó	151
5.5. Số chiếu và cơ sở của không gian con sinh bởi một họ vectơ	152
5.6. Tích vô hướng và không gian có tích vô hướng	154
5.7. Tọa độ trong không gian n chiếu	158
5.8. Bài toán đổi cơ sờ	159
B. Bài giải và Hướng dẫn	161
Chuong VI. ÁNH XA TUYÉN TÍNH	268
A. Dé bài	268
6.1. Khái niệm ánh xạ tuyến tính	268
6.2. Các tính chất của ánh xạ tuyến tính - Hạt nhân và ảnh	270
6.3. Ma trận của ánh xạ tuyến tính	272
6.4. Sự đồng dạng	275
B. Bài giải và Hướng dẫn	276
Chuong VII. TRI RIÈNG VÀ VECTO RIÊNG	326
A. Để bài	326
7.1. Trị riêng và vecto riêng của ma trận	326
7.2. Trị riêng và vecto riêng của toán tử tuyến tính	
trong không gian hữu hạn chiều	327
7.3. Vấn để chéo hóa ma trận	327
7.4. Vấn đề chéo hóa trục giao	329
7.5. Dang toàn phương	329
B. Bài giải và Hướng dẫn	330

127.0.0.1 downloaded 60383.pdf at Tue Jul 31 08:30:19 ICT 2012

Chịu trách nhiệm xuất bản : Chủ tịch HĐQT kiêm Tổng Giám đốc NGÔ TRẦN ÁI Phó Tổng Giám đốc kiêm Tổng biên tập NGUYỄN QUÝ THAO

> Biên tập lần đầu : NGUYỄN VĂN THƯỜNG

> > Biên tập tái bản :

PHAM PHU

Chế bản :

PHÒNG CHẾ BẢN (NXB GIÁO DỤC)

BÀI TẬP TOÁN HỌC CAO CẤP - TẬP I

Mā số: 7K177T6 - DAI

In. 5.000 bản, khổ 14,5 x 20,5 cm. Tại Công ty Cổ phần in Thái Nguyên. Số xuất bản: 04 2006/CXB/118 IS60/GD08:30:19 ICT 2012 In xong và nộp lưu chiều Quý IV năm 2006

www.VNMATH.com

CÔNG TY CỔ PHẦN SÁCH ĐẠI HỌC - DẠY NGHỀ **HEVOBCO**

Địa chỉ : 25 Hàn Thuyên, Hà Nôi

Tìm đọc SÁCH THAM KHẢO ĐẠI HỌC BÔ MÔN TOÁN của Nhà xuất bản Giáo dục

- 1. Giải tích hàm
- 2. Bài tập giải tích hàm
- 3. Tôpô đại cương Độ đo và tích phân
- 4. Giải tích tập 1
- 5. Giải tích tập 2
- 6. Đại số đại cương
- 7. Số đại số
- 8. Hình học vi phân
- 9. Giải tích số
- 10. Phương trình đao hàm riêng
- 11. Cơ sở phương trình vi phân và lí thuyết ổn đinh
- 12. Mở đầu lí thuyết xác suất và ứng dụng
- 13. Bài tập xác suất
- 14. Lí thuyết xác suất

15. Xác suất thống kê 16. Phương pháp tính và các thuật toán

17. Từ điển toán học thông dụng

Nguyễn Xuân Liêm Nguyễn Hữu Việt Hưng Hoàng Xuân Sính Đoàn Quỳnh Nguyễn Minh Chương (chủ biên) Nguyễn Minh Chương

Nguyễn Thế Hoàn - Pham Phu Đăng Hùng Thắng Đăng Hùng Thắng Nguyễn Duy Tiến Vũ Viết Yên Nguyễn Văn Hô Phan Văn Hap Lê Đình Thinh Ngô Thúc Lanh (chủ biên)

Giá: 20.000đ

Ban dọc có thể tìm mua tại các Công ti sách - Thiết bị trường học ở các địa phương hoặc các Cửa hàng sách của Nhà xuất bản Giáo dục: Tại Hà Nội: 25 Hàn Thuyên, 81 Trần Hưng Đạo, 187B Giảng Võ, 23 Tràng Tiền Tại Đà Nẵng: 15 Nguyễn Chí Thanh Tại Thành phố Hồ Chí Minh: 104 Mai Thị Lựu, Quận 1

ed 60383.pdf at Tue Jul 31 08:30:19 ICT 2012 27.0.0.1 dowr 81934980 685549